Blocks(矩阵快速幂)

本文介绍如何使用矩阵快速幂解决染色问题,给定一定数量的格子,每格可选择四种颜色进行染色,求解在染色过程中红色和绿色块均为偶数的情况下的不同染色方案总数,并通过取模操作得到最终结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Blocks
Time Limit: 1000MS  Memory Limit: 65536K
Total Submissions: 4036  Accepted: 1799

Description

Panda has received an assignment of painting a line of blocks. Since Panda is such an intelligent boy, he starts to think of a math problem of painting. Suppose there are N blocks in a line and each block can be paint red, blue, green or yellow. For some myterious reasons, Panda want both the number of red blocks and green blocks to be even numbers. Under such conditions, Panda wants to know the number of different ways to paint these blocks.

Input

The first line of the input contains an integer T(1≤T≤100), the number of test cases. Each of the next T lines contains an integer N(1≤N≤10^9) indicating the number of blocks.

Output

For each test cases, output the number of ways to paint the blocks in a single line. Since the answer may be quite large, you have to module it by 10007.

Sample Input

2
1
2

Sample Output

2
6

 

       题意:

       给出 T(1 ~ 100),代表有 T 个样例,后给出 N(1 ~ 10 ^ 9),代表有 N 个格子。给每个格子填色,可以填红蓝绿黄四种颜色,求染成红色和绿色同时为偶数的染色方案个数。结果模 10007。

 

       思路:

       矩阵快速幂。书上例题。设 ai 为同时为偶数的方法数,bi 为一个为偶数一个为奇数的方法数, ci 为同时为奇数的方法数,所以:

       ai+1 = 2 x ai + bi ;

       bi+1 = 2 x ai + 2 x bi + 2 x ci ;

       ci+1 = bi + 2 x ci;

       于是可以生成矩阵:

          ai+1         2  1  0           ai                      ai          2  1  0                1

       (  bi+1 ) = ( 2  2  2 )  x ( bi )      ->      ( bi )  =  ( 2  2  2 )  ^ i  X  ( 0 )

          ci+1         0  1  2           ci                       ci          0  1  2                0

       最后得出来的矩阵中的 A [ 0 ] [ 0 ] 就是答案。

 

       AC:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>

using namespace std;

typedef vector<int> vec;
typedef vector<vec> mat;

const int MOD = 10007;

mat mul (mat a, mat b) {
    mat c(a.size(), vec(b[0].size()));

    for (int i = 0; i < a.size(); ++i) {
        for (int j = 0; j < b[0].size(); ++j) {
            for (int k = 0; k < b.size(); ++k) {
                c[i][j] = (c[i][j] + a[i][k] * b[k][j]) % MOD;
            }
        }
    }

    return c;
}

mat pow (mat a, int n) {
    mat b(a.size(), vec(a[0].size()));
    for (int i = 0; i < a.size(); ++i) {
        b[i][i] = 1;
    }

    while (n > 0) {
        if (n & 1) b = mul(b, a);
        a = mul(a, a);
        n >>= 1;
    }

    return b;
}

int main() {

    int t;
    scanf("%d", &t);

    while (t--) {
        int n;
        scanf("%d", &n);

        mat a(3, vec(3));
        a[0][0] = 2, a[0][1] = 1, a[0][2] = 0;
        a[1][0] = 2, a[1][1] = 2, a[1][2] = 2;
        a[2][0] = 0, a[2][1] = 1, a[2][2] = 2;

        a = pow(a, n);

        printf("%d\n", a[0][0]);
    }

    return 0;
}

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值