判断点是否在多边形内有三个步骤:(转自csdn)
第一步:判断这个点是不是就是多边形的端点;
第二步:判断这个点是不是落在多边形的边界上;
第三步:通过这个点横向作一平行射线,判断与多边形的交点数,如果交点是顶点,则交点数加一,结果如果是奇数,则该点落在多边形之内,如果是偶数,则反之。
第二步:判断这个点是不是落在多边形的边界上;
第三步:通过这个点横向作一平行射线,判断与多边形的交点数,如果交点是顶点,则交点数加一,结果如果是奇数,则该点落在多边形之内,如果是偶数,则反之。
具体算法涉及向量叉积,具体这部分不详细说了,上网轻易查到,下面贴过主算法函数吧,参考很好用。
还是来自于csdn的。
const double INFINITY = 1e10;
const double ESP = 1e-5;
const int MAX_N = 1000;
struct Point {
double x, y;
};
struct LineSegment {
Point pt1, pt2;
};
const double ESP = 1e-5;
const int MAX_N = 1000;
struct Point {
double x, y;
};
struct LineSegment {
Point pt1, pt2;
};
inline double max(double x, double y)
{
return (x > y ? x : y);
}
inline double min(double x, double y)
{
return (x < y ? x : y);
}
// 计算叉乘 |P1P0| × |P2P0|
double Multiply(Point p1, Point p2, Point p0)
{
return ( (p1.x - p0.x) * (p2.y - p0.y) - (p2.x - p0.x) * (p1.y - p0.y) );
}
// 判断线段是否包含点point
bool IsOnline(Point point, LineSegment line)
{
return( ( fabs(Multiply(line.pt1, line.pt2, point)) < ESP ) &&
( ( point.x - line.pt1.x ) * ( point.x - line.pt2.x ) <= 0 ) &&
( ( point.y - line.pt1.y ) * ( point.y - line.pt2.y ) <= 0 ) );
}
// 判断线段相交
bool Intersect(LineSegment L1, LineSegment L2)
{
return( (max(L1.pt1.x, L1.pt2.x) >= min(L2.pt1.x, L2.pt2.x)) &&
(max(L2.pt1.x, L2.pt2.x) >= min(L1.pt1.x, L1.pt2.x)) &&
(max(L1.pt1.y, L1.pt2.y) >= min(L2.pt1.y, L2.pt2.y)) &&
(max(L2.pt1.y, L2.pt2.y) >= min(L1.pt1.y, L1.pt2.y)) &&
(Multiply(L2.pt1, L1.pt2, L1.pt1) * Multiply(L1.pt2, L2.pt2, L1.pt1) >= 0) &&
(Multiply(L1.pt1, L2.pt2, L2.pt1) * Multiply(L2.pt2, L1.pt2, L2.pt1) >= 0)
);
}
// 判断点在多边形内
bool InPolygon(Point polygon[], int n, Point point)
{
if (n == 1) {
return ( (fabs(polygon[0].x - point.x) < ESP) && (fabs(polygon[0].y - point.y) < ESP) );
} else if (n == 2) {
LineSegment side;
side.pt1 = polygon[0];
side.pt2 = polygon[1];
return IsOnline(point, side);
}
int count = 0;
LineSegment line;
line.pt1 = point;
line.pt2.y = point.y;
line.pt2.x = - INFINITY;
for( int i = 0; i < n; i++ ) {
// 得到多边形的一条边
LineSegment side;
side.pt1 = polygon[i];
side.pt2 = polygon[(i + 1) % n];
if( IsOnline(point, side) ) {
return true;
}
// 如果side平行x轴则不作考虑
if( fabs(side.pt1.y - side.pt2.y) < ESP ) {
continue;
}
if( IsOnline(side.pt1, line) ) {
if( side.pt1.y > side.pt2.y ) count++;
} else if( IsOnline(side.pt2, line) ) {
if( side.pt2.y > side.pt1.y ) count++;
} else if( Intersect(line, side) ) {
count++;
}
}
return ( count % 2 == 1 );
}
{
return (x > y ? x : y);
}
inline double min(double x, double y)
{
return (x < y ? x : y);
}
// 计算叉乘 |P1P0| × |P2P0|
double Multiply(Point p1, Point p2, Point p0)
{
return ( (p1.x - p0.x) * (p2.y - p0.y) - (p2.x - p0.x) * (p1.y - p0.y) );
}
// 判断线段是否包含点point
bool IsOnline(Point point, LineSegment line)
{
return( ( fabs(Multiply(line.pt1, line.pt2, point)) < ESP ) &&
( ( point.x - line.pt1.x ) * ( point.x - line.pt2.x ) <= 0 ) &&
( ( point.y - line.pt1.y ) * ( point.y - line.pt2.y ) <= 0 ) );
}
// 判断线段相交
bool Intersect(LineSegment L1, LineSegment L2)
{
return( (max(L1.pt1.x, L1.pt2.x) >= min(L2.pt1.x, L2.pt2.x)) &&
(max(L2.pt1.x, L2.pt2.x) >= min(L1.pt1.x, L1.pt2.x)) &&
(max(L1.pt1.y, L1.pt2.y) >= min(L2.pt1.y, L2.pt2.y)) &&
(max(L2.pt1.y, L2.pt2.y) >= min(L1.pt1.y, L1.pt2.y)) &&
(Multiply(L2.pt1, L1.pt2, L1.pt1) * Multiply(L1.pt2, L2.pt2, L1.pt1) >= 0) &&
(Multiply(L1.pt1, L2.pt2, L2.pt1) * Multiply(L2.pt2, L1.pt2, L2.pt1) >= 0)
);
}
// 判断点在多边形内
bool InPolygon(Point polygon[], int n, Point point)
{
if (n == 1) {
return ( (fabs(polygon[0].x - point.x) < ESP) && (fabs(polygon[0].y - point.y) < ESP) );
} else if (n == 2) {
LineSegment side;
side.pt1 = polygon[0];
side.pt2 = polygon[1];
return IsOnline(point, side);
}
int count = 0;
LineSegment line;
line.pt1 = point;
line.pt2.y = point.y;
line.pt2.x = - INFINITY;
for( int i = 0; i < n; i++ ) {
// 得到多边形的一条边
LineSegment side;
side.pt1 = polygon[i];
side.pt2 = polygon[(i + 1) % n];
if( IsOnline(point, side) ) {
return true;
}
// 如果side平行x轴则不作考虑
if( fabs(side.pt1.y - side.pt2.y) < ESP ) {
continue;
}
if( IsOnline(side.pt1, line) ) {
if( side.pt1.y > side.pt2.y ) count++;
} else if( IsOnline(side.pt2, line) ) {
if( side.pt2.y > side.pt1.y ) count++;
} else if( Intersect(line, side) ) {
count++;
}
}
return ( count % 2 == 1 );
}