spark内核揭秘-10-RDD源码分析

本文深入探讨了RDD(弹性分布式数据集)的核心方法,包括getPartitions、getDependencies及计算函数等,并详细解释了这些方法在Spark中的作用机制,以及如何通过它们实现数据的并行处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

RDD的核心方法:

首先看一下getPartitions方法的源码:

getPartitions返回的是一系列partitions的集合,即一个Partition类型的数组

我们就想进入HadoopRDD实现:

1、getJobConf():用来获取job Configuration,获取配置方式有clone和非clone方式,但是clone方式 是not thread-safe,默认是禁止的,非clone方式可以从cache中获取,如cache中没有那就创建一个新的,然后再放到cache中

2、进入 getInputFormcat(jobConf)方法:

3、进入inputFormat.getSplits(jobConf, minPartitions)方法:

进入FileInputFormcat类的getSplits方法:

5、进入HadoopPartition:

 

而getDependencies表达式RDD之间的依赖关系,如下所示:

getDependencies返回的是依赖关系的一个Seq集合,里面的Dependency数组中的下划线是类型的PlaceHolder

我们进入ShuffledRDD类中的getDependencies方法:

我们进入ShuffleDependency类:

每个RDD都会具有计算的函数,如下所示:

我们进入HadoopMapPartitionsWithSplitRDD的 compute方法:

Compute方法是针对RDD的每个Partition进行计算的,其TaskContext参数的源码如下:

getPreferredLocations是寻找Partition的首选位置:

我们进入NewHadoopRDD的getPreferredLocations:

 

其实RDD还有一个可选的分区策略:

Partitioner的源码如下:

可以看出默认使用的是HashPartitioner,要注意key为Array的情况;

spark.default.parallelism必须要设置,否则会根据partitions数据来传输RDD,这样也会很容易出现OOM

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值