多校2的一道状态压缩dp,好多位运算。。。还是有点难写的
#include<iostream>
#include<vector>
#include<algorithm>
#include<cstdio>
#include<queue>
#include<stack>
#include<string>
#include<map>
#include<set>
#include<cmath>
#include<cassert>
#include<cstring>
#include<iomanip>
using namespace std;
#ifdef _WIN32
#define i64 __int64
#define out64 "%I64d\n"
#define in64 "%I64d"
#else
#define i64 long long
#define out64 "%lld\n"
#define in64 "%lld"
#endif
/************ for topcoder by zz1215 *******************/
#define FOR(i,a,b) for( int i = (a) ; i <= (b) ; i ++)
#define FFF(i,a) for( int i = 0 ; i < (a) ; i ++)
#define FFD(i,a,b) for( int i = (a) ; i >= (b) ; i --)
#define S64(a) scanf(in64,&a)
#define SS(a) scanf("%d",&a)
#define LL(a) ((a)<<1)
#define RR(a) (((a)<<1)+1)
#define pb push_back
#define CL(Q) while(!Q.empty())Q.pop()
#define MM(name,what) memset(name,what,sizeof(name))
#define MAX(a,b) ((a)>(b)?(a):(b))
#define MIN(a,b) ((a)<(b)?(a):(b))
#define read freopen("in.txt","r",stdin)
#define write freopen("out.txt","w",stdout)
const int inf = 0x3f3f3f3f;
const i64 inf64 = 0x3f3f3f3f3f3f3f3fLL;
const double oo = 10e9;
const double eps = 10e-9;
const double pi = acos(-1.0);
const int maxn = 1<<10;
const int maxz = 23;
int n;
int dp[maxz][maxn+1];
int a[maxz];
int s[maxz];
int find(int x)
{
int re=0;
while(x)
{
re+=(x&1);
x>>=1;
}
return re;
}
void start()
{
for(int i=0;i<maxz;i++)
{
for(int j=0;j<=maxn;j++)
{
dp[i][j]=inf;
}
}
dp[0][0]=0;
int now,temp;
int cost;
int rest;
for(int u=1;u<maxz;u++)
{
for(int i=0;i<(1<<n);i++)
{
if(dp[u-1][i]==inf)
continue;
now = s[u]&i;
temp = s[u]|i;
for(int k=0;k<(1<<n);k++)
{
if(~k&now)
continue;
if(~temp&k)
continue;
cost = k&~now;
cost = find(cost);
rest = temp&~k;
if(find(rest)%2!=0)
{
if(rest == (1<<n)-1)
{
continue;
}
else
{
cost++;
}
}
cost*=1<<(u-1);
dp[u][k]=min(dp[u][k],cost+dp[u-1][i]);
}
}
}
return ;
}
int main()
{
while(cin>>n)
{
MM(s,0);
for(int i=0;i<n;i++)
{
cin>>a[i];
}
for(int i=1;i<maxz;i++)
{
for(int j=0;j<n;j++)
{
s[i]|=((a[j]&(1<<(i-1)))&&1)<<j;
}
}
start();
if(dp[maxz-1][0]==inf)
{
cout<<"impossible"<<endl;
}
else
{
cout<<dp[maxz-1][0]<<endl;
}
}
return 0;
}
本文介绍了一种使用状态压缩动态规划解决复杂组合问题的方法,并通过一个具体示例详细讲解了实现过程,包括初始化、状态转移等关键步骤。
1万+

被折叠的 条评论
为什么被折叠?



