HDU 1299 Diophantus of Alexandria

本文深入探讨了迪奥里安方程的理论基础,介绍了求解特定形式方程的算法,并附带了C语言代码实现。通过实例展示了如何高效计算给定n值下方程的解的数量。
Problem Description
Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of the first mathematicians to study equations where variables were restricted to integral values. In honor of him, these equations are commonly called diophantine equations. One of the most famous diophantine equation is x^n + y^n = z^n. Fermat suggested that for n > 2, there are no solutions with positive integral values for x, y and z. A proof of this theorem (called Fermat's last theorem) was found only recently by Andrew Wiles.

Consider the following diophantine equation:

1 / x + 1 / y = 1 / n where x, y, n ∈ N+ (1)


Diophantus is interested in the following question: for a given n, how many distinct solutions (i. e., solutions satisfying x ≤ y) does equation (1) have? For example, for n = 4, there are exactly three distinct solutions:

1 / 5 + 1 / 20 = 1 / 4
1 / 6 + 1 / 12 = 1 / 4
1 / 8 + 1 / 8 = 1 / 4



Clearly, enumerating these solutions can become tedious for bigger values of n. Can you help Diophantus compute the number of distinct solutions for big values of n quickly?

Input
The first line contains the number of scenarios. Each scenario consists of one line containing a single number n (1 ≤ n ≤ 10^9).

Output
The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Next, print a single line with the number of distinct solutions of equation (1) for the given value of n. Terminate each scenario with a blank line.

Sample Input
2 4 1260

Sample Output
Scenario #1: 3 Scenario #2: 113
通过做这题学会了点数论知识:

定理1: 一个正整数 n 可以用素因子唯一表示为 p1^r1 * p2^r2 * ... pk^rk (其中 pi 为素数) , 那么这个数的因子的个数就是,(r1+1)*(r2+1)~(rk+1).

定理2:如果一个数字 n = p1^r1 * p2^r2 * ... pk^rk ,那么 n*n = p1^r1 * p2^r2 * ... pk^rk * p1^r1 * p2^r2 * ... pk^rk ,它的因子的个数就是 (2*r1+1)*(2*r2+1)~(2*rk+1).

假设y=n+k
x=n*(n+k)/k->x=n^2/k+n
因子数就是num=(1+r1)*(1+r2)*(1+r3)~
n*n的因子数就是cnt=(1+2*r1)*(1+2*r2)~
代码:
LANGUAGE:C
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
char isprime[50000];
int prime[10000];
int main()
{
    int n,i,j,p,testcase,mul,sq,t,s=1;
    memset(isprime,-1,sizeof(isprime));
    for(i=2;i<250;i++)
        for(j=i*2;j<50000;j+=i)
            isprime[j]=0;
    for(i=2,p=0;i<50000;i++)
        if(isprime[i]!=0)prime[(p)++]=i;
    scanf("%d",&testcase);
    while(testcase--)
    {
        scanf("%d",&n);
        mul=1,sq=(int)sqrt(n*1.00),t=0;
        for(i=0;i<p;i++)
    	{
    	    t=0;
            if(prime[i]>sq)break;
            while(n%prime[i]==0)
    		{
               n/=prime[i];t++;
    		}
            mul*=(t*2+1);
    	}
        if(n>1)mul*=3;
        printf("Scenario #%d:\n",s++);
        printf("%d\n\n",(mul+1)/2);
    }
    return 0;
}






内容概要:本文介绍了一个基于Matlab的综合能源系统优化调度仿真资源,重点实现了含光热电站、有机朗肯循环(ORC)和电含光热电站、有机有机朗肯循环、P2G的综合能源优化调度(Matlab代码实现)转气(P2G)技术的冷、热、电多能互补系统的优化调度模型。该模型充分考虑多种能源形式的协同转换与利用,通过Matlab代码构建系统架构、设定约束条件并求解优化目标,旨在提升综合能源系统的运行效率与经济性,同时兼顾灵活性供需不确定性下的储能优化配置问题。文中还提到了相关仿真技术支持,如YALMIP工具包的应用,适用于复杂能源系统的建模与求解。; 适合人群:具备一定Matlab编程基础和能源系统背景知识的科研人员、研究生及工程技术人员,尤其适合从事综合能源系统、可再生能源利用、电力系统优化等方向的研究者。; 使用场景及目标:①研究含光热、ORC和P2G的多能系统协调调度机制;②开展考虑不确定性的储能优化配置与经济调度仿真;③学习Matlab在能源系统优化中的建模与求解方法,复现高水平论文(如EI期刊)中的算法案例。; 阅读建议:建议读者结合文档提供的网盘资源,下载完整代码和案例文件,按照目录顺序逐步学习,重点关注模型构建逻辑、约束设置与求解器调用方式,并通过修改参数进行仿真实验,加深对综合能源系统优化调度的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值