hdu 1159 Common Subsequence

最长公共子序列算法
本文介绍了一种求解最长公共子序列(LCS)问题的经典动态规划算法,并提供了完整的C语言实现代码。通过状态转移方程定义了问题的递推关系。
Common Subsequence
Time Limit : 2000/1000ms (Java/Other)Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 29Accepted Submission(s) : 16
Problem Description
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

Sample Input
abcfbc abfcab
programming contest
abcd mnp

Sample Output
4
2
0

题意:求两个串的最长公共子序列

用f [ i ][ j ]表示处理到字符串A的第 i 位 和 字符串B第 j 位时的最大值。
状态转移方程如下:
f [ i ][ j ] = f[ i - 1 ][ j - 1 ] + 1 (A[ i ] == B[ j ])
f [ i ][ j ] = max( f[ i - 1 ][ j ], f [ i ][ j - 1] ) (A[ i ] != B[ j ])

由于每次循环计算只和上一行状态有关,所以可以用循环数组压缩空间

和背包中的一样哦

#include<stdio.h>
#include<string.h>
char a[1000],b[1000];
int dp[1000][1000];
int d1,d2;
int main()
{
    
    int i,j;
    while(scanf("%s",a+1)!=EOF)
    {
        scanf("%s",b+1);
         d1=strlen(a+1);
         d2=strlen(b+1);
         for(i=0;i<=d1;i++)
             dp[i][0]=0;
         for(j=0;j<=d2;j++)
             dp[0][j]=0;
         for(i=1;i<=d1;i++)
         {
             for(j=1;j<=d2;j++)
                 if(a[i]==b[j]) dp[i][j]=dp[i-1][j-1]+1;
                 else 
                 {
                     dp[i][j]=dp[i-1][j]>dp[i][j-1]?dp[i-1][j]:dp[i][j-1];
                 }
         }
              printf("%d\n",dp[d1][d2]);

    }
    return 0;
}



评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值