这是道比较经典的线段树 详情可以参考http://www.notonlysuccess.com/index.php/segment-tree-complete/sha崽大神的bolg
但需要注意的就是区间到点的转化了。 要保证转化后的区间满足集合的基本性质,比如删除一些区间后相应的点被删除,有可能会点删除完了,区间却还有,这就不符合了。
所以就要把每个点乘以二之类的,还有一些细节,注意一下
/*
ID: sdj22251
PROG: inflate
LANG: C++
*/
#include <iostream>
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <cstring>
#include <cmath>
#include <ctime>
#define MAXN 66666*2
#define INF 1000000000
#define L(x) x<<1
#define R(x) x<<1|1
using namespace std;
bool used[MAXN + 5];
struct node
{
int left, right, mid;
int Xor, Cover;
}tree[4 * MAXN];
void make_tree(int s, int e, int C)
{
tree[C].left = s;
tree[C].right = e;
tree[C].mid = (s + e) >> 1;
tree[C].Xor = tree[C].Cover = 0;
if(s == e) return;
make_tree(s, tree[C].mid, L(C));
make_tree(tree[C].mid + 1, e, R(C));
}
void fun_xor(int C)
{
if(tree[C].Cover != -1) tree[C].Cover ^= 1;
else tree[C].Xor ^= 1;
}
void down(int C)
{
if(tree[C].Cover != -1)
{
tree[L(C)].Cover = tree[R(C)].Cover = tree[C].Cover;
tree[L(C)].Xor = tree[R(C)].Xor = 0;
tree[C].Cover = -1;
}
if(tree[C].Xor)
{
fun_xor(L(C));
fun_xor(R(C));
tree[C].Xor = 0;
}
}
void update(int s, int e, int C, char op)
{
if(tree[C].left >= s && tree[C].right <= e)
{
if(op == 'U')
{
tree[C].Cover = 1;
tree[C].Xor = 0;
}
else if(op == 'D')
tree[C].Xor = tree[C].Cover = 0;
else if(op == 'C' || op == 'S')
fun_xor(C);
return;
}
down(C);
if(tree[C].mid >= s) update(s, e, L(C), op);
else if(op == 'I' || op == 'C') tree[L(C)].Xor = tree[L(C)].Cover = 0;
if(tree[C].mid < e) update(s, e, R(C), op);
else if(op == 'I' || op == 'C') tree[R(C)].Xor = tree[R(C)].Cover = 0;
}
void query(int C)
{
if(tree[C].Cover == 1)
{
for(int i = tree[C].left; i <= tree[C].right; i++)
used[i] = 1;
return;
}
else if(tree[C].Cover == 0) return;
if(tree[C].left == tree[C].right) return;
down(C);
query(L(C));
query(R(C));
}
void solve(int l, int r, char lc, char rc, char op)
{
int ll = 2 * l, rr = 2 * r;
if(lc == '(') ll++;
if(rc == ')') rr--;
if(ll > rr)
{
if(op == 'C' || op == 'I')
tree[1].Cover = tree[1].Xor = 0;
}
else update(ll, rr, 1, op);
}
int main()
{
char str[5], lc, rc;
int l, r;
make_tree(0, MAXN, 1);
while(scanf("%s %c%d,%d%c", str, &lc, &l, &r, &rc) != EOF)
{
solve(l, r, lc, rc, str[0]);
}
query(1);
int flag = 0;
int s = -1, e;
for(int i = 0; i <= MAXN; i++)
{
if(used[i])
{
if(s == -1) s = i;
e = i;
}
else
{
if(s != -1)
{
if(flag) printf(" ");
flag = 1;
lc = '[', rc = ')';
if(s&1) lc = '(';
if(!(e&1)) rc = ']';
printf("%c%d,%d%c", lc, s>>1, (e+1)>>1, rc);
s = -1;
}
}
}
if (!flag) printf("empty set");
printf("\n");
return 0;
}