POJ 2942 Knights of the Round Table 点重连通分量+交叉染色判奇圈

本文探讨了一道独特的图论问题,通过将武士之间的仇视关系转化为无向图,并利用二分图和割点的概念,解决如何在满足特定条件下安排武士参加圆桌会议的问题。详细阐述了构建无向图、识别双连通分量及使用交叉染色法判断奇圈的过程,最终计算出完全不可能参加圆桌会议的武士数量。

这道题的意思是,一群武士,某些武士之间相互仇视,在一起会发生争斗事件,因此只有满足一定条件才能够参加圆桌会议。首先是圆桌上相邻的两个武士不能有仇,同一个圆桌上的武士数量必须是奇数,而且大于2。最后求完全不可能参加会议的武士的数量。

那么可以联想到转化为一个无向图,各个武士看成顶点,互相没仇的武士之间建边,表示可以坐在一块,

建立无向图后,所有能坐在一起的武士分为一组,这一组在图中必然就是一个双连通分量,因为在一个结点大于2的双连通分量中,必然存在一个圈经过连通分量的所有点,这样就表示形成了一个圆桌,并且这个圈应该是奇圈,判奇圈的方式用的是交叉染色,意思也很好理解,假如在一个圆桌上,从某一个人开始,进行1,2报数,那么如果人的个数是奇数,最后一个人和第一个人报的数必然是一样的。这个实际上就是判断是不是二分图,因为二分图内是不存在奇圈的。如果用其他的方法就比较不好实现,比如数圈上结点的个数,听起来很简单,但是做起来还是难以实现。

求重连通分量的方法,就是在求割点的基础上进行的,建立一个栈,存储当前重连通分量,在DFS过程中,每找到一个边或回边,就把这条边加入栈中,如果遇到某个顶点u的子女v满足low[v] >= dfn[u] ,说明u为割点,同时把边从栈顶一条条的取出,直到遇到了边(u, v),这些取出的边便组成了一个重连通分量。

需要注意的是,要开一个二维数组记录边是否访问过,访问过就不能再访问了,如果不记录,在POJ会WA掉。但是如果仅仅用程序来求割点,而不求重连通分量,记录不记录边是否访问过好像就没有影响了。


#include <iostream>
#include <cstdio>
#include <cstring>
#define MAXN 1005
#define MAXM 1000005
#define INF 1000000000
using namespace std;
int n, m;
int mp[MAXN][MAXN], e, head[MAXN];
int vis[MAXN], ok[MAXN], mark[MAXN], col[MAXN];
int tmpdfn, top, dfn[MAXN], low[MAXN];
struct Edge
{
    int v, next;
}edge[MAXM];
struct Stack
{
    int s, e;
    Stack(){}
    Stack(int a, int b){s = a; e = b;}
}st[MAXM];
void init()
{
    e = 0, tmpdfn = 0, top = -1;
    memset(mp, 0, sizeof(mp));
    memset(head, -1, sizeof(head));
    memset(vis, 0, sizeof(vis));
    memset(ok, 0, sizeof(ok));
}
void insert(int x, int y)
{
    edge[e].v = y;
    edge[e].next = head[x];
    head[x] = e++;
}
void ReadData()
{
    int u, v;
    while(m--)
    {
        scanf("%d%d", &u, &v);
        mp[u][v] = mp[v][u] = -1;
    }
}
void build()
{
    ReadData();
    for(int i = 1; i <= n; i++)
    {
        mp[i][i] = -1;
        for(int j = 1; j <= n; j++)
            if(mp[i][j] == 0) insert(i, j);
    }
}
bool can(int u)
{
    for(int i = head[u]; i != -1; i = edge[i].next)
    {
        int v = edge[i].v;
        if(mark[v])
        {
            if(col[v] == -1){col[v] = !col[u]; return can(v);}
            else if(col[v] == col[u]) return 1;
        }
    }
    return 0;
}
void color(int u, Stack t)
{
    memset(mark, 0, sizeof(mark));
    memset(col, -1, sizeof(col));
    col[u] = 0;
    while(top >= 0)
    {
        Stack A = st[top--];
        mark[A.s] = mark[A.e] = 1;
        if(A.s == t.s && A.e == t.e) break;
    }
    if(can(u))
        for(int i = 1; i <= n; i++)
            if(mark[i]) ok[i] = 1;
}
void dfs(int u, int fa)
{
    vis[u] = 1;
    dfn[u] = low[u] = ++tmpdfn;
    for(int i = head[u]; i != -1; i = edge[i].next)
    {
        int v = edge[i].v;
        if(mp[u][v] == 0)
        {
            mp[u][v] = mp[v][u] = 1;
            Stack tmp(u, v);
            st[++top] = tmp;
            if(!vis[v])
            {
                dfs(v, u);
                low[u] = min(low[u], low[v]);
                if(low[v] >= dfn[u]) color(u, tmp);
            }
            else if(v != fa) low[u] = min(low[u], dfn[v]);
        }
    }
}
void solve()
{
    for(int i = 1; i <= n; i++)
        if(!vis[i]) dfs(i, 0);
    int ans = 0;
    for(int i = 1; i <= n; i++)
        if(!ok[i]) ans++;
    printf("%d\n", ans);
}
int main()
{
    while(scanf("%d%d", &n, &m) != EOF)
    {
        if(n == 0 && m == 0) break;
        init();
        build();
        solve();
    }
    return 0;
}


内容概要:本文详细介绍了“秒杀商城”微服务架构的设计与实战全过程,涵盖系统从需求分析、服务拆分、技术选型到核心功能开发、分布式事务处理、容器化部署及监控链路追踪的完整流程。解决了高并发场景下的超卖问题,采用Redis预减库存、消息队列削峰、数据库乐观锁等手段保障数据一致性,并通过Nacos实现服务注册发现与配置管理,利用Seata处理跨服务分布式事务,结合RabbitMQ实现异步下单,提升系统吞吐能力。同时,项目支持Docker Compose快速部署和Kubernetes生产级编排,集成Sleuth+Zipkin链路追踪与Prometheus+Grafana监控体系,构建可观测性强的微服务系统。; 适合人群:具备Java基础和Spring Boot开发经验,熟悉微服务基本概念的中高级研发人员,尤其是希望深入理解高并发系统设计、分布式事务、服务治理等核心技术的开发者;适合工作2-5年、有志于转型微服务或提升架构能力的工程师; 使用场景及目标:①学习如何基于Spring Cloud Alibaba构建完整的微服务项目;②掌握秒杀场景下高并发、超卖控制、异步化、削峰填谷等关键技术方案;③实践分布式事务(Seata)、服务熔断降级、链路追踪、统一配置中心等企业级中间件的应用;④完成从本地开发到容器化部署的全流程落地; 阅读建议:建议按照文档提供的七个阶段循序渐进地动手实践,关注秒杀流程设计、服务间通信机制、分布式事务实现和系统性能优化部分,结合代码调试与监控工具深入理解各组件协作原理,真正掌握高并发微服务系统的构建能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值