Sliding Window Maximum [#67]

本文介绍了一种高效求解滑动窗口最大值问题的方法,使用双向队列(Deque)来跟踪窗口内的最大值候选元素,确保每个窗口的最大值始终位于队列头部,实现了O(n)的时间复杂度。

A long array A[] is given to you. There is a sliding window of size w which is moving from the very left of the array to the very right. You can only see the w numbers in the window. Each time the sliding window moves rightwards by one position.

Following is an example:The array is [1 3 -1 -3 5 3 6 7], and w is 3.

Window position Max
--------------- -----
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3[-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7

Input: A long array A[], and a window width w
Output: An array B[], B[i] is the maximum value of from A[i] to A[i+w-1]

Answer: The obvious solution with run time complexity of O(nw) is definitely not efficient enough. Every time the window is moved, we have to search for the maximum from w elements in the window.

We need a data structure where we can store the candidates for maximum value in the window and discard the element, which are outside the boundary of window. For this, we need a data structure in which we can edit at both the ends, front and back. Deque is a perfect candidate for this problem.

We are trying to find a way in which, we need not search for maximum element among all in the window. We will make sure that the largest element in the window would always appear in the front of the queue.

While traversing the array in forward direction if we find a window where element A[i] > A[j] and i > j, we can surely say that A[j], will not be the maximum element for this and succeeding windows. So there is no need of storing j in the queue and we can discard A[j] forever.

For example, if the current queue has the elements: [4 13 9], and a new element in the window has the element 15. Now, we can empty the queue without considering elements 4, 13, and 9, and insert only element 15 into the queue.

 public static Integer[] getMaxInSlideWindow(Integer[] A, Integer w) {
     // invalid input
     if (A == null || w <= 0 || A.length - w < 0) return null;

     Integer[] B = new Integer[A.length - w + 1];

     // auxiliary queue that is sorted in descending order
     LinkedList<Integer> q = new LinkedList<Integer>();

     for (int i = 0; i < A.length; i++) {
         // enqueue. Remove those smaller values
         int data = A[i];
         while (!q.isEmpty() && q.getLast() < data) {
             q.removeLast();
         }
         q.add(data);

         if (i < w - 1) continue; 

         // dequeue. If the current number is the maximum. Also remove it
         // from the queue
         B[i - w + 1] = q.get(0);
         if (A[i - w + 1] == B[i - w + 1]) {
             q.removeFirst();
         }
     }

     return B;
 }
The above algorithm could be proven to have run time complexity of O(n). This is because each element in the list is being inserted and then removed at most once. Therefore, the total number of insert + delete operations is 2n.


参考:http://www.leetcode.com/2011/01/sliding-window-maximum.html

http://tech-queries.blogspot.com/2011/05/sliding-window-maximum.html

http://www.sureinterview.com/shwqst/897001

【四轴飞行器】非线性三自由度四轴飞行器模拟器研究(Matlab代码实现)内容概要:本文围绕非线性三自由度四轴飞行器模拟器的研究展开,重点介绍了基于Matlab的建模与仿真方法。通过对四轴飞行器的动力学特性进行分析,构建了非线性状态空间模型,并实现了姿态与位置的动态模拟。研究涵盖了飞行器运动方程的建立、控制系统设计及数值仿真验证等环节,突出非线性系统的精确建模与仿真优势,有助于深入理解飞行器在复杂工况下的行为特征。此外,文中还提到了多种配套技术如PID控制、状态估计与路径规划等,展示了Matlab在航空航天仿真中的综合应用能力。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的高校学生、科研人员及从事无人机系统开发的工程技术人员,尤其适合研究生及以上层次的研究者。; 使用场景及目标:①用于四轴飞行器控制系统的设计与验证,支持算法快速原型开发;②作为教学工具帮助理解非线性动力学系统建模与仿真过程;③支撑科研项目中对飞行器姿态控制、轨迹跟踪等问题的深入研究; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注动力学建模与控制模块的实现细节,同时可延伸学习文档中提及的PID控制、状态估计等相关技术内容,以全面提升系统仿真与分析能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值