A new parameter to control updating statistics strategy

本文探讨了MySQL中索引选择的问题及优化策略。通过调整InnoDB统计样本数及禁用动态更新机制来提高索引选择准确性。

       If a table contains several indexes and a select query does not have a “force index” hint clause, the MySQL optimizer take charge of determining which index to use. In some cases, we find that MySQL optimizer does not select the best index.

Here we discuss a strategy to deal with the problem, using a new parameter.

 

1、table and index statistics

The statistics contains the number of different key values in a given index, which affects the decision of index selection.

       In a big table, it is not workable that scans all the rows and counts the accurate statistics. So InnoDB pick up some example rows to estimate the result. The variable “innodb_stats_sample_pages “is used to define the number of example rows. Its default value is 8.

       There should be a balance consideration about this variable. Because the function “dict_update_statistics”, which is used to update a table’s statistics, is automatically called at various times. The bigger the innodb_stats_sample_pages is, the more accurate result comes, but it may lead to excessive I/O and CPU.

 

2、When the dict_update_statistics called?

There are some scenarios that dict_update_statistics will be called.

a)       Statements like “show status”

Such as “show index from table-name” and “show status like ‘’”.  There is a variable named “innodb_stats_on_metadata” to control whether run dict_update_statistics in such queries. Default value is ON.

b)       Table monitor

When a table named “innodb_table_monitor”(InnoDB table) is created, table monitor will be run every minute. “dict_update_statistics” is called here.

c)        Analyze table table-name

d)       Dynamically during insert/update operation.

This is why the innodb_stats_sample_pages cannot be set too big. There is a counter to record the times of modifying indexed column of this table from last dict_update_statistics. When the counter is up to 2000000000 or 1/16 of the table row number, dict_update_statistics is called.

 

3、Force re-calculate statistics using analyze table

Let’s look into the next steps:

Set innodb_stats_sample_pages = BIGNUM;

Analyze table table-name;

Set innodb_stats_sample_pages = 8;

 

Obviously this does not make sense, for the reason of d) in last section.

 

4、Strategy for certain requirement

But let’s think about this case, when there are lots of rows in a table, and the row number will keep relatively stable in a period.

We run the analyze table command, and test the queries that will run upon this table, check that the index selection working well.

Since the dynamically re-calculating may get wrong statistics and then leads to wrong index-selection, we plan to disable the mechanism, using a variable that can be update by command “set global”.

The variable can be named “innodb_stats_dynamically”, ON as default.

So when we think the data number is big enough and will be relatively stable in a period afterward, the sample commands can be as follow:

 

Set innodb_stats_dynamically = off;

Set innodb_stats_sample_pages = BIGNUM;

Analyze table table-name;

Set innodb_stats_sample_pages = 8; (optional)

 

        

分布式微服务企业级系统是一个基于Spring、SpringMVC、MyBatis和Dubbo等技术的分布式敏捷开发系统架构。该系统采用微服务架构和模块化设计,提供整套公共微服务模块,包括集中权限管理(支持单点登录)、内容管理、支付中心、用户管理(支持第三方登录)、微信平台、存储系统、配置中心、日志分析、任务和通知等功能。系统支持服务治理、监控和追踪,确保高可用性和可扩展性,适用于中小型企业的J2EE企业级开发解决方案。 该系统使用Java作为主要编程语言,结合Spring框架实现依赖注入和事务管理,SpringMVC处理Web请求,MyBatis进行数据持久化操作,Dubbo实现分布式服务调用。架构模式包括微服务架构、分布式系统架构和模块化架构,设计模式应用了单例模式、工厂模式和观察者模式,以提高代码复用性和系统稳定性。 应用场景广泛,可用于企业信息化管理、电子商务平台、社交应用开发等领域,帮助开发者快速构建高效、安全的分布式系统。本资源包含完整的源码和详细论文,适合计算机科学或软件工程专业的毕业设计参考,提供实践案例和技术文档,助力学生和开发者深入理解微服务架构和分布式系统实现。 【版权说明】源码来源于网络,遵循原项目开源协议。付费内容为本人原创论文,包含技术分析和实现思路。仅供学习交流使用。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值