NIO

本文探讨了Java中传统I/O库与NIO的主要区别,即数据处理方式的不同:前者以流的方式逐字节处理数据;后者以块的方式批量处理数据。面向块的I/O系统虽然牺牲了一定的优雅性和简单性,但处理速度显著提升。

FROM 
IBM : developerWorks 中国网站

流与块的比较


原来的 I/O 库(在 java.io.*中) 与 NIO 最重要的区别是数据打包和传输的方式。正如前面提到的,原来的 I/O 以流的方式处理数据,而 NIO 以块的方式处理数据。


面向流 的 I/O 系统一次一个字节地处理数据。一个输入流产生一个字节的数据,一个输出流消费一个字节的数据。为流式数据创建过滤器非常容易。链接几个过滤器,以便每个过滤器只负责单个复杂处理机制的一部分,这样也是相对简单的。不利的一面是,面向流的 I/O 通常相当慢。


一个 面向块 的 I/O 系统以块的形式处理数据。每一个操作都在一步中产生或者消费一个数据块。按块处理数据比按(流式的)字节处理数据要快得多。但是面向块的 I/O 缺少一些面向流的 I/O 所具有的优雅性和简单性。


http://java.sun.com/docs/books/tutorial/networking/index.html

 

http://java.sun.com/developer/technicalArticles/releases/nio/

 

http://javanio.info/

 

http://java.sun.com/j2se/1.4.2/docs/guide/nio/

 

http://www.exampledepot.com/egs/java.nio/pkg.html

 

http://rox-xmlrpc.sourceforge.net/niotut/index.html

 

http://www.pdf-search-engine.com/java-nio-pdf.html

 

https://www6.software.ibm.com/developerworks/education/j-nio/index.html

 

 

这里有个很好的 Applet 演示工具展示了buffer内部的机制

 

http://www.javanio.info/filearea/demos/

 

 

 

 

 

【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值