Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
Integers in each row are sorted in ascending from left to right.
Integers in each column are sorted in ascending from top to bottom.
For example,
Consider the following matrix:
[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
Given target = 5, return true.
Given target = 20, return false.
在一个二维数组找一个元素,数组中的每一行和每一列都是升序排列的。我们可以从数组的右上方作者左下方的元素开始寻找。设定两个指针m, n,假设从右上方开始,如果matrix[m][n]与target相等就返回true;如果matrix[m][n]小于target就让m指针往下移动(m++); 如果大于target就让n指针向左移动(n--), 直到遍历完整个数组,这样时间复杂度为O(m+n)。代码如下:
Integers in each row are sorted in ascending from left to right.
Integers in each column are sorted in ascending from top to bottom.
For example,
Consider the following matrix:
[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
Given target = 5, return true.
Given target = 20, return false.
在一个二维数组找一个元素,数组中的每一行和每一列都是升序排列的。我们可以从数组的右上方作者左下方的元素开始寻找。设定两个指针m, n,假设从右上方开始,如果matrix[m][n]与target相等就返回true;如果matrix[m][n]小于target就让m指针往下移动(m++); 如果大于target就让n指针向左移动(n--), 直到遍历完整个数组,这样时间复杂度为O(m+n)。代码如下:
public class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
if(matrix == null || matrix.length == 0) return false;
int m = 0;
int n = matrix[0].length - 1;
while(m < matrix.length && n >= 0) {
if(matrix[m][n] == target) return true;
if(matrix[m][n] > target) {
n --;
} else {
m ++;
}
}
return false;
}
}