UML之 依赖、关联、聚合、组合

本文解析了依赖、关联、聚合与组合四种软件设计关系,并详细阐述了它们在代码层面的表现形式及语义级别上的区别。

依赖
可以简单的理解,就是一个类A使用到了另一个类B,而这种使用关系是具有偶然性的、、临时性的、非常弱的,但是B类的变化会影响到A;比如某人要过河,需要借用一条船,此时人与船之间的关系就是依赖;表现在代码层面,为类B作为参数被类A在某个method方法中使用;

关联
他体现的是两个类、或者类与接口之间语义级别的一种强依赖关系,比如我和我的朋友;这种关系比依赖更强、不存在依赖关系的偶然性、关系也不是临时性的,一般是长期性的,而且双方的关系一般是平等的、关联可以是单向、双向的;表现在代码层面,为被关联类B以类属性的形式出现在关联类A中,也可能是关联类A引用了一个类型为被关联类B的全局变量;

聚合
聚合是关联关系的一种特例,他体现的是整体与部分、拥有的关系,即has-a的关系,此时整体与部分之间是可分离的,他们可以具有各自的生命周期,部分可以属于多个整体对象,也可以为多个整体对象共享;比如计算机与CPU、公司与员工的关系等;表现在代码层面,和关联关系是一致的,只能从语义级别来区分;

组合
组合也是关联关系的一种特例,他体现的是一种contains-a的关系,这种关系比聚合更强,也称为强聚合;他同样体现整体与部分间的关系,但此时整体与部分是不可分的,整体的生命周期结束也就意味着部分的生命周期结束;比如你和你的大脑;表现在代码层面,和关联关系是一致的,只能从语义级别来区分;

这四个关系体现的是类与类、或者类与接口间的引用、横向关系,是比较难区分的,有很多事物间的关系要想准确定位是很难的,前面也提到,这几种关系都是语义级别的,所以从代码层面并不能完全区分各种关系;

 

但总的来说,这几种关系所表现的强弱程度依次为:组合>聚合>关联>依赖

提供了基于BP(Back Propagation)神经网络结合PID(比例-积分-微分)控制策略的Simulink仿真模型。该模型旨在实现对杨艺所著论文《基于S函数的BP神经网络PID控制器及Simulink仿真》中的理论进行实践验证。在Matlab 2016b环境下开发,经过测试,确保能够正常运行,适合学习和研究神经网络在控制系统中的应用。 特点 集成BP神经网络:模型中集成了BP神经网络用于提升PID控制器的性能,使之能更好地适应复杂控制环境。 PID控制优化:利用神经网络的自学习能力,对传统的PID控制算法进行了智能调整,提高控制精度和稳定性。 S函数应用:展示了如何在Simulink中通过S函数嵌入MATLAB代码,实现BP神经网络的定制化逻辑。 兼容性说明:虽然开发于Matlab 2016b,但理论上兼容后续版本,可能会需要调整少量配置以适配不同版本的Matlab。 使用指南 环境要求:确保你的电脑上安装有Matlab 2016b或更高版本。 模型加载: 下载本仓库到本地。 在Matlab中打开.slx文件。 运行仿真: 调整模型参数前,请先熟悉各模块功能和输入输出设置。 运行整个模型,观察控制效果。 参数调整: 用户可以自由调节神经网络的层数、节点数以及PID控制器的参数,探索不同的控制性能。 学习和修改: 通过阅读模型中的注释和查阅相关文献,加深对BP神经网络与PID控制结合的理解。 如需修改S函数内的MATLAB代码,建议有一定的MATLAB编程基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值