POJ 1094解题报告

本文介绍了解决POJ1094问题的方法,采用拓扑排序算法,并使用邻接表保存图数据结构。文章详细展示了如何通过检测环路来确定字母排序序列是否唯一确定,以及如何在检测到冲突时进行处理。

POJ 1094解题报告

这个题主要的是使用拓扑排序,相关算法随便找一本算法的书都能看到,也不难,就不罗嗦了。

我使用邻接表来保存图,并使用dm,dn分别保存每个节点(即字母)的出度和入度。

我只想强调一下需要注意的:

一、先判断是否有环路

我就是一开始在检测到不能确定序列的时候就直接返回了,而没有判断是否有环路,结果一直WA;

二、当序列可以确定或是检测到环路的时候,忽略后边的输入。

Code:
  1. #include<iostream>
  2. #include<fstream>
  3. usingnamespacestd;
  4. charG[26][26];
  5. intdm[26];//每一列的和,即每个字母的入度
  6. intdn[26];//每一行的和,即每个字母的出度
  7. intm,n;
  8. charresult[27];
  9. intTopoSort()
  10. {
  11. intindex;//起点
  12. intr=0;
  13. intcount;
  14. boolsorted=true;
  15. intdmt[26];
  16. intdnt[26];
  17. memcpy(dmt,dm,sizeof(dmt));
  18. memcpy(dnt,dn,sizeof(dnt));
  19. //找出入度为零的点
  20. for(intj=0;j<n;j++)
  21. {
  22. count=0;
  23. for(inti=0;i<n;i++)
  24. {
  25. if(0==dmt[i])
  26. {
  27. index=i;
  28. count++;
  29. }
  30. }
  31. if(0==count)//发现环路
  32. returncount;
  33. if(count>1)sorted=false;
  34. for(inti=0;i<dnt[index];i++)
  35. {
  36. dmt[G[index][i]-'A']--;
  37. }
  38. dmt[index]=-1;
  39. result[r++]=index+'A';
  40. }
  41. result[r]=0;
  42. if(sorted)
  43. return1;//序**定
  44. else
  45. return2;//序列不确定
  46. }
  47. intmain()
  48. {
  49. inti,j,k;
  50. charstr[4];
  51. //ifstreamin("data.in");
  52. cin>>n>>m;
  53. while(n&&m)
  54. {
  55. k=0;
  56. intfound=0;//可以完全确定序列
  57. intincons=0;//发现冲突,即环路
  58. memset(dm,0,sizeof(dm));
  59. memset(dn,0,sizeof(dn));
  60. memset(G,0,sizeof(G));
  61. for(i=0;i<m;i++)
  62. {
  63. cin>>str;
  64. if(!found&&!incons)
  65. {
  66. for(j=0;j<dn[str[0]-'A'];j++)
  67. {
  68. if(G[str[0]-'A'][j]==str[2])
  69. break;
  70. }
  71. if(j==dn[str[0]-'A'])
  72. {
  73. G[str[0]-'A'][j]=str[2];
  74. dm[str[2]-'A']++;
  75. dn[str[0]-'A']++;
  76. }
  77. intres=TopoSort();
  78. if(1==res)//序列已确定
  79. {
  80. found=i+1;
  81. }
  82. elseif(0==res)//发现冲突
  83. {
  84. incons=i+1;
  85. }
  86. }
  87. }
  88. if(found)
  89. {
  90. cout<<"Sortedsequencedeterminedafter"<<found<<"relations:"<<result<<"."<<endl;
  91. }
  92. elseif(incons)
  93. {
  94. cout<<"Inconsistencyfoundafter"<<incons<<"relations."<<endl;
  95. }
  96. else
  97. {
  98. cout<<"Sortedsequencecannotbedetermined."<<endl;
  99. }
  100. cin>>n>>m;
  101. }
  102. return0;
  103. }

基于蒙特卡洛法的规模化电动车有序充放电及负荷预测(Python&Matlab实现)内容概要:本文围绕“基于蒙特卡洛法的规模化电动车有序充放电及负荷预测”展开,结合Python和Matlab编程实现,重点研究大规模电动汽车在电网中的充放电行为建模与负荷预测方法。通过蒙特卡洛模拟技术,对电动车用户的出行规律、充电需求、接入时间与电量消耗等不确定性因素进行统计建模,进而实现有序充放电策略的优化设计与未来负荷曲线的精准预测。文中提供了完整的算法流程与代码实现,涵盖数据采样、概率分布拟合、充电负荷聚合、场景仿真及结果可视化等关键环节,有效支撑电网侧对电动车负荷的科学管理与调度决策。; 适合人群:具备一定电力系统基础知识和编程能力(Python/Matlab),从事新能源、智能电网、交通电气化等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究大规模电动车接入对配电网负荷特性的影响;②设计有序充电策略以平抑负荷波动;③实现基于概率模拟的短期或长期负荷预测;④为电网规划、储能配置与需求响应提供数据支持和技术方案。; 阅读建议:建议结合文中提供的代码实例,逐步运行并理解蒙特卡洛模拟的实现逻辑,重点关注输入参数的概率分布设定与多场景仿真的聚合方法,同时可扩展加入分时电价、用户行为偏好等实际约束条件以提升模型实用性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值