STRUTS和WEBWORK在VALIDATE的区别

本文介绍了Struts和WebWork框架中实现数据验证的方法,包括如何使用<html:errors>和<ww:actionerror>来显示错误信息,如何配置短路校验,以及如何通过<interceptor-ref>进行操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

STRUTS中使用<html:errors

                        property="CancerContactMe.contactName" />来获取validation.xml中定义的必须填写的属性的错误信息;或者通过<html:messages id="error">来获取所有错误信息;

<plug-in className="org.apache.struts.validator.ValidatorPlugIn">

        <set-property property="pathnames" value="/WEB-INF/conf/struts/validator-rules.xml,/WEB-INF/conf/struts/validation.xml" />

        <set-property property="stopOnFirstError" value="false" />

    </plug-in>这个中的stopOnFirstErrorTRUE来设置短路校验;

 

WEBWORK中使用<ww:actionerror/>来获取validation.xml中的错误信息;

通过使用short-circuit="true"来设置短路校验

struts-config.xml文件中,action节点下有“validate”这样一个属性。在struts框架中,默认属性是validate=”true”。所以如果想通过Form Baens的重载validate方法来验证数据的话,可以不用理会这一点。题外话:如果你在struts-config.xml文件中,设置validate="false"的话,validate方法将不起作用。这一点同样对Validate框架来验证数据起作用;对于这点对WEBWORK也同样适应!

附件是从JAVAEYE中获取到的代码,里面记录了WEBWORK的VALIDATE的使用!

而当validate="false"的时候,也想用validation.xml来进行校验的话;STRUTS是使用 form.validate(mapping, request);来进行操作,而WEBWORK则通过<interceptor-ref name="validation"/>进行操作!

内容概要:该PPT详细介绍了企业架构设计的方法论,涵盖业务架构、数据架构、应用架构技术架构四大核心模块。首先分析了企业架构现状,包括业务、数据、应用技术四大架构的内容关系,明确了企业架构设计的重要性。接着,阐述了新版企业架构总体框架(CSG-EAF 2.0)的形成过程,强调其融合了传统架构设计(TOGAF)领域驱动设计(DDD)的优势,以适应数字化转型需求。业务架构部分通过梳理企业级专业级价值流,细化业务能力、流程对象,确保业务战略的有效落地。数据架构部分则遵循五大原则,确保数据的准确、一致高效使用。应用架构方面,提出了分层解耦服务化的设计原则,以提高灵活性响应速度。最后,技术架构部分围绕技术框架、组件、平台部署节点进行了详细设计,确保技术架构的稳定性扩展性。 适合人群:适用于具有一定企业架构设计经验的IT架构师、项目经理业务分析师,特别是那些希望深入了解如何将企业架构设计与数字化转型相结合的专业人士。 使用场景及目标:①帮助企业组织梳理业务流程,优化业务能力,实现战略目标;②指导数据管理应用开发,确保数据的一致性应用的高效性;③为技术选型系统部署提供科学依据,确保技术架构的稳定性扩展性。 阅读建议:此资源内容详尽,涵盖企业架构设计的各个方面。建议读者在学习过程中,结合实际案例进行理解实践,重点关注各架构模块之间的关联协同,以便更好地应用于实际工作中。
资 源 简 介 独立分量分析(Independent Component Analysis,简称ICA)是近二十年来逐渐发展起来的一种盲信号分离方法。它是一种统计方法,其目的是从由传感器收集到的混合信号中分离相互独立的源信号,使得这些分离出来的源信号之间尽可能独立。它在语音识别、电信医学信号处理等信号处理方面有着广泛的应用,目前已成为盲信号处理,人工神经网络等研究领域中的一个研究热点。本文简要的阐述了ICA的发展、应用现状,详细地论述了ICA的原理及实现过程,系统地介绍了目前几种主要ICA算法以及它们之间的内在联系, 详 情 说 明 独立分量分析(Independent Component Analysis,简称ICA)是近二十年来逐渐发展起来的一种盲信号分离方法。它是一种统计方法,其目的是从由传感器收集到的混合信号中分离相互独立的源信号,使得这些分离出来的源信号之间尽可能独立。它在语音识别、电信医学信号处理等信号处理方面有着广泛的应用,目前已成为盲信号处理,人工神经网络等研究领域中的一个研究热点。 本文简要的阐述了ICA的发展、应用现状,详细地论述了ICA的原理及实现过程,系统地介绍了目前几种主要ICA算法以及它们之间的内在联系,在此基础上重点分析了一种快速ICA实现算法一FastICA。物质的非线性荧光谱信号可以看成是由多个相互独立的源信号组合成的混合信号,而这些独立的源信号可以看成是光谱的特征信号。为了更好的了解光谱信号的特征,本文利用独立分量分析的思想方法,提出了利用FastICA算法提取光谱信号的特征的方案,并进行了详细的仿真实验。 此外,我们还进行了进一步的研究,探索了其他可能的ICA应用领域,如音乐信号处理、图像处理以及金融数据分析等。通过在这些领域中的实验应用,我们发现ICA在提取信号特征、降噪信号分离等方面具有广泛的潜力应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值