Java线程池

Java线程池使用说明

一简介

线程的使用在java中占有极其重要的地位,在jdk1.4极其之前的jdk版本中,关于线程池的使用是极其简陋的。在jdk1.5之后这一情况有了很大的改观。Jdk1.5之后加入了java.util.concurrent包,这个包中主要介绍java中线程以及线程池的使用。为我们在开发中处理线程的问题提供了非常大的帮助。

二:线程池

线程池的作用:

线程池作用就是限制系统中执行线程的数量。
     根据系统的环境情况,可以自动或手动设置线程数量,达到运行的最佳效果;少了浪费了系统资源,多了造成系统拥挤效率不高。用线程池控制线程数量,其他线程排队等候。一个任务执行完毕,再从队列的中取最前面的任务开始执行。若队列中没有等待进程,线程池的这一资源处于等待。当一个新任务需要运行时,如果线程池中有等待的工作线程,就可以开始运行了;否则进入等待队列。

为什么要用线程池:

1.减少了创建和销毁线程的次数,每个工作线程都可以被重复利用,可执行多个任务。

2.可以根据系统的承受能力,调整线程池中工作线线程的数目,防止因为消耗过多的内存,而把服务器累趴下(每个线程需要大约1MB内存,线程开的越多,消耗的内存也就越大,最后死机)。

Java里面线程池的顶级接口是Executor,但是严格意义上讲Executor并不是一个线程池,而只是一个执行线程的工具。真正的线程池接口是ExecutorService

比较重要的几个类:

ExecutorService

真正的线程池接口。

ScheduledExecutorService

能和Timer/TimerTask类似,解决那些需要任务重复执行的问题。

ThreadPoolExecutor

ExecutorService的默认实现。

ScheduledThreadPoolExecutor

继承ThreadPoolExecutorScheduledExecutorService接口实现,周期性任务调度的类实现。

要配置一个线程池是比较复杂的,尤其是对于线程池的原理不是很清楚的情况下,很有可能配置的线程池不是较优的,因此在Executors类里面提供了一些静态工厂,生成一些常用的线程池。

1. newSingleThreadExecutor

创建一个单线程的线程池。这个线程池只有一个线程在工作,也就是相当于单线程串行执行所有任务。如果这个唯一的线程因为异常结束,那么会有一个新的线程来替代它。此线程池保证所有任务的执行顺序按照任务的提交顺序执行。

2. newFixedThreadPool

创建固定大小的线程池。每次提交一个任务就创建一个线程,直到线程达到线程池的最大大小。线程池的大小一旦达到最大值就会保持不变,如果某个线程因为执行异常而结束,那么线程池会补充一个新线程。

3. newCachedThreadPool

创建一个可缓存的线程池。如果线程池的大小超过了处理任务所需要的线程,

那么就会回收部分空闲(60秒不执行任务)的线程,当任务数增加时,此线程池又可以智能的添加新线程来处理任务。此线程池不会对线程池大小做限制,线程池大小完全依赖于操作系统(或者说JVM)能够创建的最大线程大小。

4. newScheduledThreadPool

创建一个大小无限的线程池。此线程池支持定时以及周期性执行任务的需求。

实例

1newSingleThreadExecutor

MyThread.java

publicclass MyThread extends Thread {

     @Override

     publicvoid run() {

         System.out.println(Thread.currentThread().getName() + "正在执行。。。");

     }

}

TestSingleThreadExecutor.java

publicclass TestSingleThreadExecutor {

     publicstaticvoid main(String[] args) {

         // 创建一个可重用固定线程数的线程池

         ExecutorService pool = Executors. newSingleThreadExecutor();

         // 创建实现了Runnable接口对象,Thread对象当然也实现了Runnable接口

         Thread t1 = new MyThread();

         Thread t2 = new MyThread();

         Thread t3 = new MyThread();

         Thread t4 = new MyThread();

         Thread t5 = new MyThread();

         // 将线程放入池中进行执行

         pool.execute(t1);

         pool.execute(t2);

         pool.execute(t3);

         pool.execute(t4);

         pool.execute(t5);

         // 关闭线程池

         pool.shutdown();

     }

}

输出结果

pool-1-thread-1正在执行。。。

pool-1-thread-1正在执行。。。

pool-1-thread-1正在执行。。。

pool-1-thread-1正在执行。。。

pool-1-thread-1正在执行。。。

2 newFixedThreadPool

TestFixedThreadPool.Java

publicclass TestFixedThreadPool {

     publicstaticvoid main(String[] args) {

         // 创建一个可重用固定线程数的线程池

         ExecutorService pool = Executors.newFixedThreadPool(2);

         // 创建实现了Runnable接口对象,Thread对象当然也实现了Runnable接口

         Thread t1 = new MyThread();

         Thread t2 = new MyThread();

         Thread t3 = new MyThread();

         Thread t4 = new MyThread();

         Thread t5 = new MyThread();

         // 将线程放入池中进行执行

         pool.execute(t1);

         pool.execute(t2);

         pool.execute(t3);

         pool.execute(t4);

         pool.execute(t5);

         // 关闭线程池

         pool.shutdown();

     }

}

输出结果

pool-1-thread-1正在执行。。。

pool-1-thread-2正在执行。。。

pool-1-thread-1正在执行。。。

pool-1-thread-2正在执行。。。

pool-1-thread-1正在执行。。。

3 newCachedThreadPool

TestCachedThreadPool.java

publicclass TestCachedThreadPool {

     publicstaticvoid main(String[] args) {

         // 创建一个可重用固定线程数的线程池

         ExecutorService pool = Executors.newCachedThreadPool();

         // 创建实现了Runnable接口对象,Thread对象当然也实现了Runnable接口

         Thread t1 = new MyThread();

         Thread t2 = new MyThread();

         Thread t3 = new MyThread();

         Thread t4 = new MyThread();

         Thread t5 = new MyThread();

         // 将线程放入池中进行执行

         pool.execute(t1);

         pool.execute(t2);

         pool.execute(t3);

         pool.execute(t4);

         pool.execute(t5);

         // 关闭线程池

         pool.shutdown();

     }

}

输出结果:

pool-1-thread-2正在执行。。。

pool-1-thread-4正在执行。。。

pool-1-thread-3正在执行。。。

pool-1-thread-1正在执行。。。

pool-1-thread-5正在执行。。。

4 newScheduledThreadPool

TestScheduledThreadPoolExecutor.java

publicclass TestScheduledThreadPoolExecutor {

     publicstaticvoid main(String[] args) {

         ScheduledThreadPoolExecutor exec = new ScheduledThreadPoolExecutor(1);

         exec.scheduleAtFixedRate(new Runnable() {// 每隔一段时间就触发异常

                       @Override

                       publicvoid run() {

                            //throw new RuntimeException();

                            System.out.println("================");

                       }

                   }, 1000, 5000, TimeUnit.MILLISECONDS);

         exec.scheduleAtFixedRate(new Runnable() {// 每隔一段时间打印系统时间,证明两者是互不影响的

                       @Override

                       publicvoid run() {

                            System.out.println(System.nanoTime());

                       }

                   }, 1000, 2000, TimeUnit.MILLISECONDS);

     }

}

输出结果

================

8384644549516

8386643829034

8388643830710

================

8390643851383

8392643879319

8400643939383

三:ThreadPoolExecutor详解

ThreadPoolExecutor的完整构造方法的签名是:ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) .

corePoolSize - 池中所保存的线程数,包括空闲线程。

maximumPoolSize - 池中允许的最大线程数。

keepAliveTime - 当线程数大于核心时,此为终止前多余的空闲线程等待新任务的最长时间。

unit - keepAliveTime 参数的时间单位。

workQueue - 执行前用于保持任务的队列。此队列仅保持由 execute 方法提交的 Runnable 任务。

threadFactory - 执行程序创建新线程时使用的工厂。

handler - 由于超出线程范围和队列容量而使执行被阻塞时所使用的处理程序。

ThreadPoolExecutorExecutors类的底层实现。

JDK帮助文档中,有如此一段话:

强烈建议程序员使用较为方便的 Executors工厂方法 Executors.newCachedThreadPool()(无界线程池,可以进行自动线程回收)、Executors.newFixedThreadPool(int)(固定大小线程池) Executors.newSingleThreadExecutor()(单个后台线程)

它们均为大多数使用场景预定义了设置。

下面介绍一下几个类的源码:

ExecutorService   newFixedThreadPool (int nThreads):固定大小线程池。

可以看到,corePoolSize和maximumPoolSize的大小是一样的(实际上,后面会介绍,如果使用无界queue的话maximumPoolSize参数是没有意义的),keepAliveTime和unit的设值表名什么?-就是该实现不想keep alive!最后的BlockingQueue选择了LinkedBlockingQueue,queue有一个特点,他是无界的。

1.   public static ExecutorService newFixedThreadPool(int nThreads) {   

2.           return new ThreadPoolExecutor(nThreads, nThreads,   

3.                                         0L, TimeUnit.MILLISECONDS,   

4.                                         new LinkedBlockingQueue<Runnable>());   

5.       }

ExecutorService   newSingleThreadExecutor():单线程

1.   public static ExecutorService newSingleThreadExecutor() {   

2.           return new FinalizableDelegatedExecutorService   

3.               (new ThreadPoolExecutor(11,   

4.                                       0L, TimeUnit.MILLISECONDS,   

5.                                       new LinkedBlockingQueue<Runnable>()));   

6.       }

ExecutorService newCachedThreadPool():无界线程池,可以进行自动线程回收

这个实现就有意思了。首先是无界的线程池,所以我们可以发现maximumPoolSizebig big。其次BlockingQueue的选择上使用SynchronousQueue。可能对于该BlockingQueue有些陌生,简单说:该QUEUE中,每个插入操作必须等待另一个线程的对应移除操作。

1.   public static ExecutorService newCachedThreadPool() {   

2.           return new ThreadPoolExecutor(0, Integer.MAX_VALUE,   

3.                                         60L, TimeUnit.SECONDS,   

4.                                         new SynchronousQueue<Runnable>());   

  1.     }

先从BlockingQueue<Runnable> workQueue这个入参开始说起。在JDK中,其实已经说得很清楚了,一共有三种类型的queue

所有 BlockingQueue 都可用于传输和保持提交的任务。可以使用此队列与池大小进行交互:

如果运行的线程少于 corePoolSize,则 Executor 始终首选添加新的线程,而不进行排队。(如果当前运行的线程小于corePoolSize,则任务根本不会存放,添加到queue中,而是直接抄家伙(thread)开始运行

如果运行的线程等于或多于 corePoolSize,则 Executor 始终首选将请求加入队列而不添加新的线程

如果无法将请求加入队列,则创建新的线程,除非创建此线程超出 maximumPoolSize,在这种情况下,任务将被拒绝。

queue上的三种类型。

 

排队有三种通用策略:

直接提交。工作队列的默认选项是 SynchronousQueue,它将任务直接提交给线程而不保持它们。在此,如果不存在可用于立即运行任务的线程,则试图把任务加入队列将失败,因此会构造一个新的线程。此策略可以避免在处理可能具有内部依赖性的请求集时出现锁。直接提交通常要求无界 maximumPoolSizes 以避免拒绝新提交的任务。当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。

无界队列。使用无界队列(例如,不具有预定义容量的 LinkedBlockingQueue)将导致在所有 corePoolSize 线程都忙时新任务在队列中等待。这样,创建的线程就不会超过 corePoolSize。(因此,maximumPoolSize 的值也就无效了。)当每个任务完全独立于其他任务,即任务执行互不影响时,适合于使用无界队列;例如,在 Web 页服务器中。这种排队可用于处理瞬态突发请求,当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。

有界队列。当使用有限的 maximumPoolSizes 时,有界队列(如 ArrayBlockingQueue)有助于防止资源耗尽,但是可能较难调整和控制。队列大小和最大池大小可能需要相互折衷:使用大型队列和小型池可以最大限度地降低 CPU 使用率、操作系统资源和上下文切换开销,但是可能导致人工降低吞吐量。如果任务频繁阻塞(例如,如果它们是 I/O 边界),则系统可能为超过您许可的更多线程安排时间。使用小型队列通常要求较大的池大小,CPU 使用率较高,但是可能遇到不可接受的调度开销,这样也会降低吞吐量。  

BlockingQueue的选择。

例子一:使用直接提交策略,也即SynchronousQueue

首先SynchronousQueue是无界的,也就是说他存数任务的能力是没有限制的,但是由于该Queue本身的特性,在某次添加元素后必须等待其他线程取走后才能继续添加。在这里不是核心线程便是新创建的线程,但是我们试想一样下,下面的场景。

我们使用一下参数构造ThreadPoolExecutor:

1.   new ThreadPoolExecutor(   

2.               2330, TimeUnit.SECONDS,    

3.               new  SynchronousQueue<Runnable>(),    

4.               new RecorderThreadFactory("CookieRecorderPool"),    

  1.             new ThreadPoolExecutor.CallerRunsPolicy());  

new ThreadPoolExecutor(

   2, 3, 30, TimeUnit.SECONDS,

   new SynchronousQueue<Runnable>(),

   new RecorderThreadFactory("CookieRecorderPool"),

   new ThreadPoolExecutor.CallerRunsPolicy());

 当核心线程已经有2个正在运行.

  1. 此时继续来了一个任务(A),根据前面介绍的“如果运行的线程等于或多于 corePoolSize,则 Executor 始终首选将请求加入队列而不添加新的线程。”,所以A被添加到queue中。
  2. 又来了一个任务(B),且核心2个线程还没有忙完,OK,接下来首先尝试1中描述,但是由于使用的SynchronousQueue,所以一定无法加入进去。
  3. 此时便满足了上面提到的“如果无法将请求加入队列,则创建新的线程,除非创建此线程超出maximumPoolSize,在这种情况下,任务将被拒绝。”,所以必然会新建一个线程来运行这个任务。
  4. 暂时还可以,但是如果这三个任务都还没完成,连续来了两个任务,第一个添加入queue中,后一个呢?queue中无法插入,而线程数达到了maximumPoolSize,所以只好执行异常策略了。

所以在使用SynchronousQueue通常要求maximumPoolSize是无界的,这样就可以避免上述情况发生(如果希望限制就直接使用有界队列)。对于使用SynchronousQueue的作用jdk中写的很清楚:此策略可以避免在处理可能具有内部依赖性的请求集时出现锁

什么意思?如果你的任务A1,A2有内部关联,A1需要先运行,那么先提交A1,再提交A2,当使用SynchronousQueue我们可以保证,A1必定先被执行,在A1么有被执行前,A2不可能添加入queue中。

例子二:使用无界队列策略,即LinkedBlockingQueue

这个就拿newFixedThreadPool来说,根据前文提到的规则:

如果运行的线程少于 corePoolSize,则 Executor 始终首选添加新的线程,而不进行排队。那么当任务继续增加,会发生什么呢?

如果运行的线程等于或多于 corePoolSize,则 Executor 始终首选将请求加入队列,而不添加新的线程。OK,此时任务变加入队列之中了,那什么时候才会添加新线程呢?

如果无法将请求加入队列,则创建新的线程,除非创建此线程超出 maximumPoolSize,在这种情况下,任务将被拒绝。这里就很有意思了,可能会出现无法加入队列吗?不像SynchronousQueue那样有其自身的特点,对于无界队列来说,总是可以加入的(资源耗尽,当然另当别论)。换句说,永远也不会触发产生新的线程!corePoolSize大小的线程数会一直运行,忙完当前的,就从队列中拿任务开始运行。所以要防止任务疯长,比如任务运行的实行比较长,而添加任务的速度远远超过处理任务的时间,而且还不断增加,不一会儿就爆了。

例子三:有界队列,使用ArrayBlockingQueue

这个是最为复杂的使用,所以JDK不推荐使用也有些道理。与上面的相比,最大的特点便是可以防止资源耗尽的情况发生。

举例来说,请看如下构造方法:

1.   new ThreadPoolExecutor(   

2.               2430, TimeUnit.SECONDS,    

3.               new ArrayBlockingQueue<Runnable>(2),    

4.               new RecorderThreadFactory("CookieRecorderPool"),    

5.               new ThreadPoolExecutor.CallerRunsPolicy());  

new ThreadPoolExecutor(

     2, 4, 30, TimeUnit.SECONDS,

     new ArrayBlockingQueue<Runnable>(2),

     new RecorderThreadFactory("CookieRecorderPool"),

     new ThreadPoolExecutor.CallerRunsPolicy());

假设,所有的任务都永远无法执行完。

对于首先来的A,B来说直接运行,接下来,如果来了C,D,他们会被放到queue中,如果接下来再来E,F,则增加线程运行E,F。但是如果再来任务,队列无法再接受了,线程数也到达最大的限制了,所以就会使用拒绝策略来处理。

keepAliveTime

jdk中的解释是:当线程数大于核心时,此为终止前多余的空闲线程等待新任务的最长时间。

有点拗口,其实这个不难理解,在使用了“池”的应用中,大多都有类似的参数需要配置。比如数据库连接池,DBCP中的maxIdle,minIdle参数。

什么意思?接着上面的解释,后来向老板派来的工人始终是“借来的”,俗话说“有借就有还”,但这里的问题就是什么时候还了,如果借来的工人刚完成一个任务就还回去,后来发现任务还有,那岂不是又要去借?这一来一往,老板肯定头也大死了。

 

合理的策略:既然借了,那就多借一会儿。直到“某一段”时间后,发现再也用不到这些工人时,便可以还回去了。这里的某一段时间便是keepAliveTime的含义,TimeUnit为keepAliveTime值的度量。

 

RejectedExecutionHandler

另一种情况便是,即使向老板借了工人,但是任务还是继续过来,还是忙不过来,这时整个队伍只好拒绝接受了。

RejectedExecutionHandler接口提供了对于拒绝任务的处理的自定方法的机会。在ThreadPoolExecutor中已经默认包含了4中策略,因为源码非常简单,这里直接贴出来。

CallerRunsPolicy:线程调用运行该任务的 execute 本身。此策略提供简单的反馈控制机制,能够减缓新任务的提交速度。

1.   public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {   

2.               if (!e.isShutdown()) {   

3.                   r.run();   

4.               }   

5.           }  

public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {

            if (!e.isShutdown()) {

                r.run();

            }

        }

这个策略显然不想放弃执行任务。但是由于池中已经没有任何资源了,那么就直接使用调用该execute的线程本身来执行。

AbortPolicy处理程序遭到拒绝将抛出运行时 RejectedExecutionException

1.   public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {   

2.               throw new RejectedExecutionException();   

3.           }  

public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {

            throw new RejectedExecutionException();

        }

 这种策略直接抛出异常,丢弃任务。

DiscardPolicy不能执行的任务将被删除

1.   public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {   

2.           }  

public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {

        }

 这种策略和AbortPolicy几乎一样,也是丢弃任务,只不过他不抛出异常。

DiscardOldestPolicy如果执行程序尚未关闭,则位于工作队列头部的任务将被删除,然后重试执行程序(如果再次失败,则重复此过程)

1.   public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {   

2.               if (!e.isShutdown()) {   

3.                   e.getQueue().poll();   

4.                   e.execute(r);   

5.               }   

  1.         }  

public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {

            if (!e.isShutdown()) {

                e.getQueue().poll();

                e.execute(r);

            }

        }

该策略就稍微复杂一些,在pool没有关闭的前提下首先丢掉缓存在队列中的最早的任务,然后重新尝试运行该任务。这个策略需要适当小心。

设想:如果其他线程都还在运行,那么新来任务踢掉旧任务,缓存在queue中,再来一个任务又会踢掉queue中最老任务。

总结:

keepAliveTime和maximumPoolSize及BlockingQueue的类型均有关系。如果BlockingQueue是无界的,那么永远不会触发maximumPoolSize,自然keepAliveTime也就没有了意义。

反之,如果核心数较小,有界BlockingQueue数值又较小,同时keepAliveTime又设的很小,如果任务频繁,那么系统就会频繁的申请回收线程。

 

public static ExecutorService newFixedThreadPool(int nThreads) {

        return new ThreadPoolExecutor(nThreads, nThreads,

                                      0L, TimeUnit.MILLISECONDS,

                                      new LinkedBlockingQueue<Runnable>());

    }

<think>我们正在讨论Java线程池的使用和原理。根据引用内容,线程池Java中主要通过ThreadPoolExecutor类实现,从JDK5开始内置支持。线程池的好处包括重用线程、控制并发数量、管理线程生命周期等。常见的线程池类型有:FixedThreadPool(固定容量)、CachedThreadPool(缓存)、SingleThreadExecutor(单线程)、ScheduledThreadPool(定时任务)以及通过ThreadPoolExecutor自定义创建。我们将分步骤讲解:1.线程池的核心原理2.创建线程池的五种方式(包括不推荐的原因)3.重点讲解ThreadPoolExecutor及其参数4.线程池的工作机制(任务提交、执行、拒绝策略等)5.使用示例注意:根据引用[3]和[4],ThreadPoolExecutor是构建线程池的核心类,因此我们将重点分析。步骤1:线程池的核心原理线程池通过预先创建一定数量的线程并维护它们,避免频繁创建和销毁线程的开销。当有任务提交时,线程池分配空闲线程执行任务;若没有空闲线程,任务将被放入队列等待;当队列满时,根据设定的拒绝策略处理。步骤2:创建线程池的五种方式(引用[3]和[5])1.newCachedThreadPool:创建一个可缓存的线程池,线程数可无限增加(最大为Integer.MAX_VALUE),空闲线程默认60秒回收。不推荐原因:可能创建过多线程导致OOM。2.newFixedThreadPool:固定大小的线程池,使用无界队列(LinkedBlockingQueue)。不推荐原因:无界队列可能堆积大量任务导致OOM。3.newSingleThreadExecutor:只有一个线程的线程池,同样使用无界队列。不推荐原因同上。4.newScheduledThreadPool:用于定时或周期性任务的线程池。不推荐直接使用的原因是其最大线程数为Integer.MAX_VALUE,可能创建过多线程。5.推荐方式:直接使用ThreadPoolExecutor构造函数创建,可明确指定参数,避免资源耗尽。步骤3:ThreadPoolExecutor的七个参数(引用[3]和[4])构造方法如下:```javapublicThreadPoolExecutor(intcorePoolSize,intmaximumPoolSize,longkeepAliveTime,TimeUnitunit,BlockingQueue<Runnable>workQueue,ThreadFactorythreadFactory,RejectedExecutionHandlerhandler)```1.corePoolSize:核心线程数,即使空闲也不会被回收(除非设置allowCoreThreadTimeOut)2.maximumPoolSize:最大线程数3.keepAliveTime:非核心线程的空闲存活时间4.unit:存活时间单位5.workQueue:任务队列(常用有ArrayBlockingQueue有界队列,LinkedBlockingQueue无界队列,SynchronousQueue同步移交队列)6.threadFactory:线程工厂,用于创建线程7.handler:拒绝策略(当线程池和队列都满时触发)步骤4:线程池的工作机制(任务提交执行流程)1.提交任务后,如果当前线程数小于corePoolSize,则创建新线程执行(即使有空闲线程)。2.如果当前线程数>=corePoolSize,则将任务放入workQueue。3.如果队列已满,且线程数小于maximumPoolSize,则创建新的非核心线程执行。4.如果队列已满且线程数达到maximumPoolSize,则触发拒绝策略。拒绝策略(handler)有四种:-AbortPolicy(默认):抛出RejectedExecutionException-CallerRunsPolicy:由调用线程执行该任务-DiscardPolicy:丢弃任务,不抛异常-DiscardOldestPolicy:丢弃队列最前面的任务,然后重试步骤5:使用示例(以ThreadPoolExecutor为例)下面是一个自定义线程池的示例:```javaimportjava.util.concurrent.*;publicclassThreadPoolExample{publicstaticvoidmain(String[]args){//创建线程池ThreadPoolExecutorexecutor=newThreadPoolExecutor(2,//核心线程数5,//最大线程数60,//空闲线程存活时间TimeUnit.SECONDS,newArrayBlockingQueue<>(10),//有界队列,容量10Executors.defaultThreadFactory(),newThreadPoolExecutor.AbortPolicy());//拒绝策略:直接抛出异常//提交任务for(inti=0;i<15;i++){finalinttaskId=i;executor.execute(()->{System.out.println("Task"+taskId+"isrunningonthread"+Thread.currentThread().getName());try{Thread.sleep(1000);//模拟任务执行}catch(InterruptedExceptione){e.printStackTrace();}});}//关闭线程池executor.shutdown();}}```注意:实际任务数15个,核心线程2个,最大线程5个,队列容量10个。因此前2个任务会创建核心线程执行,接下来的10个任务放入队列,然后第13、14、15个任务会创建非核心线程(共3个非核心线程,总线程数5个)。如果超过15个任务(比如16个),则会触发拒绝策略。最后,关于线程池的关闭,可以使用shutdown()(等待已提交任务完成)或shutdownNow()(尝试中断所有线程,停止任务)。总结:使用线程池时,推荐直接使用ThreadPoolExecutor构造函数,根据实际需求设置参数,避免使用Executors工厂方法可能导致的资源耗尽问题。相关问题:1.线程池中任务队列有哪些类型?各自特点是什么?2.如何合理设置线程池的核心线程数和最大线程数?3.线程池的拒绝策略有哪些?如何自定义拒绝策略?4.如何监控线程池的运行状态?5.线程池中线程是如何创建的?如何自定义线程工厂?</think>### Java线程池使用指南与原理分析 Java线程池通过`java.util.concurrent`包实现,核心类是`ThreadPoolExecutor`。线程池的核心思想是**复用线程**,避免频繁创建销毁线程的开销。线程池中的线程执行完任务后不会销毁,而是回到池中等待新任务[^2]。 --- #### **一、线程池的创建方式** Java提供5种创建线程池的方法(实际都是`ThreadPoolExecutor`的包装): 1. **固定大小线程池**(推荐) ```java ExecutorService fixedPool = Executors.newFixedThreadPool(5); // 固定5个线程 ``` - 特点:核心线程数=最大线程数,使用无界队列`LinkedBlockingQueue` - 风险:任务过多时可能导致OOM(队列无限增长)[^5] 2. **缓存线程池**(不推荐) ```java ExecutorService cachedPool = Executors.newCachedThreadPool(); ``` - 特点:线程数无上限(`Integer.MAX_VALUE`),空闲线程60秒回收 - 风险:高并发时可能创建大量线程导致OOM[^3] 3. **单线程池** ```java ExecutorService singlePool = Executors.newSingleThreadExecutor(); ``` - 特点:仅1个线程,保证任务顺序执行 - 风险:同固定线程池(无界队列问题) 4. **定时任务线程池** ```java ScheduledExecutorService scheduledPool = Executors.newScheduledThreadPool(3); ``` 5. **推荐做法:手动创建`ThreadPoolExecutor`** ```java ThreadPoolExecutor customPool = new ThreadPoolExecutor( 4, // 核心线程数 10, // 最大线程数 60, // 空闲线程存活时间(秒) TimeUnit.SECONDS, new ArrayBlockingQueue<>(100), // 有界队列(容量100) new ThreadPoolExecutor.AbortPolicy() // 拒绝策略 ); ``` --- #### **二、核心参数详解(7个关键参数)** ```java public ThreadPoolExecutor( int corePoolSize, // 核心线程数(常驻线程) int maximumPoolSize, // 最大线程数 long keepAliveTime, // 非核心线程空闲存活时间 TimeUnit unit, // 时间单位 BlockingQueue<Runnable> workQueue, // 任务队列 ThreadFactory threadFactory, // 线程工厂 RejectedExecutionHandler handler // 拒绝策略 ) ``` 1. **任务队列类型** - `ArrayBlockingQueue`:**有界队列**(推荐),避免OOM - `LinkedBlockingQueue`:**无界队列**(默认) - `SynchronousQueue`:不存储任务,直接移交线程 2. **拒绝策略**(当队列和线程池全满时触发) - `AbortPolicy`(默认):抛出`RejectedExecutionException` - `CallerRunsPolicy`:由调用者线程直接执行任务 - `DiscardPolicy`:静默丢弃任务 - `DiscardOldestPolicy`:丢弃队列最旧的任务 --- #### **三、线程池工作原理** 1. **任务提交流程**: - 当线程数 < `corePoolSize`,**创建新线程**执行任务 - 当线程数 >= `corePoolSize`,任务进入**工作队列** - 当队列已满且线程数 < `maximumPoolSize`,**创建临时线程**执行 - 当队列满且线程数达到`maximumPoolSize`,触发**拒绝策略**[^4] 2. **线程回收机制**: - 核心线程默认不回收(除非设置`allowCoreThreadTimeOut(true)`) - 非核心线程空闲超过`keepAliveTime`后自动销毁 --- #### **四、最佳实践** 1. **参数设置建议**: - CPU密集型任务:核心线程数 = CPU核数 + 1 - IO密集型任务:核心线程数 = 2 * CPU核数 - 使用**有界队列**防止资源耗尽 - 拒绝策略选择`CallerRunsPolicy`保证任务不丢失 2. **代码示例**: ```java ThreadPoolExecutor executor = new ThreadPoolExecutor( Runtime.getRuntime().availableProcessors(), // 核心线程数=CPU核数 Runtime.getRuntime().availableProcessors() * 2, 30, TimeUnit.SECONDS, new ArrayBlockingQueue<>(500), Executors.defaultThreadFactory(), new ThreadPoolExecutor.CallerRunsPolicy() ); // 提交任务 executor.execute(() -> System.out.println("Task running")); // 优雅关闭 executor.shutdown(); executor.awaitTermination(1, TimeUnit.MINUTES); ``` 3. **注意事项**: - 避免使用`Executors`快捷方法(有OOM风险) - 监控线程池状态(通过`getActiveCount()`等方法) - 务必调用`shutdown()`释放资源 --- #### **五、原理解析** - **线程复用**:通过`Worker`类封装线程,循环从队列获取任务执行[^3] - **任务调度**:核心逻辑在`ThreadPoolExecutor.execute()`方法中 - **资源控制**:通过`BlockingQueue`实现生产者-消费者模型 > 线程池的本质是**资源池化技术**(Pooling),通过复用线程降低系统开销,同时提供流量缓冲和容错能力[^4]。 --- ### 相关问题 1. **为什么`FixedThreadPool`使用无界队列会导致OOM?如何避免?** 2. **线程池中`corePoolSize`和`maximumPoolSize`设置不当会产生什么后果?** 3. **如何实现一个自定义拒绝策略(如记录日志或降级处理)?** 4. **线程池的`shutdown()`和`shutdownNow()`有什么区别?** 5. **如何监控线程池的运行状态(如队列积压、活跃线程数)?** [^1]: ThreadPoolExecutor是Java线程池的核心实现类。 [^2]: JDK5开始内置线程池,线程执行后返回池中复用。 [^3]: 手动创建ThreadPoolExecutor可避免资源耗尽风险。 [^4]: 线程池通过队列缓冲和动态扩缩容管理任务。 [^5]: FixedThreadPool的无界队列可能导致OOM。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值