lucene.search.Weight

本文深入解析了org.apache.lucene.search下的Weight类,阐述了其在Lucene搜索机制中的关键作用,包括查询权重计算、归一化及评分器创建过程。通过理解Weight的工作原理,读者将能更好地掌握Lucene搜索引擎内部实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

org.apache.lucene.search 
Class Weight

java.lang.Object
  org.apache.lucene.search.Weight
All Implemented Interfaces:
Serializable
Direct Known Subclasses:
BooleanQuery.BooleanWeightConstantScoreQuery.ConstantWeightDisjunctionMaxQuery.DisjunctionMaxWeightSpanWeight

public abstract class Weight
extends Object implements Serializable

Expert: Calculate query weights and build query scorers.

 

The purpose of Weight is to ensure searching does not modify a Query, so that a Query instance can be reused. 
Searcher dependent state of the query should reside in the Weight
IndexReader dependent state should reside in the Scorer.

 

Weight is used in the following way:

  1. Weight is constructed by a top-level query, given a Searcher (Query.createWeight(Searcher)).
  2. The sumOfSquaredWeights() method is called on the Weight to compute the query normalization factor Similarity.queryNorm(float) of the query clauses contained in the query.
  3. The query normalization factor is passed to normalize(float). At this point the weighting is complete.
  4. Scorer is constructed by scorer(IndexReader,boolean,boolean).



     
Lucene 是一个全文搜索引擎框架,它主要用于对文本内容进行索引和搜索,不直接涉及会员权重机制的设计。但是,我们可以借助 Lucene 实现一个基于搜索结果的会员权重机制。 具体实现思路如下: 1. 首先需要在 Lucene 中建立索引,将会员数据以及相应的权重信息添加到索引中。 2. 在用户进行搜索时,根据搜索关键词进行查询,并将查询结果按照相关性排序。 3. 在排序后的结果中,对于每个会员,根据其权重信息进行加权计算,得到最终权重值。 4. 将最终权重值作为该会员在搜索结果中的权重值,可以根据该权重值对搜索结果进行再排序,以提高与用户搜索意图相关的会员排名。 下面是一个简单的示例代码,假设我们有一个会员数据集合 members,包含每个会员的名称和权重信息,我们要根据用户的搜索关键词 query 进行查询,并对搜索结果进行会员权重计算。 ```java import org.apache.lucene.analysis.standard.StandardAnalyzer; import org.apache.lucene.document.Document; import org.apache.lucene.document.Field; import org.apache.lucene.document.FloatField; import org.apache.lucene.document.StringField; import org.apache.lucene.index.IndexWriter; import org.apache.lucene.index.IndexWriterConfig; import org.apache.lucene.search.IndexSearcher; import org.apache.lucene.search.Query; import org.apache.lucene.search.ScoreDoc; import org.apache.lucene.search.TopDocs; import org.apache.lucene.search.TotalHits; import org.apache.lucene.search.similarities.ClassicSimilarity; import org.apache.lucene.store.Directory; import org.apache.lucene.store.RAMDirectory; import org.apache.lucene.util.Version; import java.io.IOException; import java.util.ArrayList; import java.util.List; public class MemberSearcher { private static final Version VERSION = Version.LUCENE_8_8_0; private final Directory directory; private final IndexSearcher searcher; public MemberSearcher(List<Member> members) throws IOException { // 创建内存型索引 directory = new RAMDirectory(); // 创建索引写入器 IndexWriterConfig config = new IndexWriterConfig(new StandardAnalyzer()); IndexWriter writer = new IndexWriter(directory, config); // 将会员数据添加到索引中 for (Member member : members) { Document doc = new Document(); doc.add(new StringField("name", member.getName(), Field.Store.YES)); doc.add(new FloatField("weight", member.getWeight(), Field.Store.YES)); writer.addDocument(doc); } writer.close(); // 创建索引搜索器 searcher = new IndexSearcher(directory); searcher.setSimilarity(new ClassicSimilarity()); // 设置相似度计算器 } public List<String> search(String query) throws Exception { List<String> results = new ArrayList<>(); // 创建查询对象 Query q = new QueryParser("name", new StandardAnalyzer()).parse(query); // 执行查询并获取结果 TopDocs docs = searcher.search(q, 10); TotalHits totalHits = docs.totalHits; ScoreDoc[] hits = docs.scoreDocs; // 对搜索结果进行会员权重计算 for (ScoreDoc hit : hits) { Document doc = searcher.doc(hit.doc); float weight = doc.getField("weight").numericValue().floatValue(); float score = hit.score; float finalScore = weight * score; // 计算最终权重值 results.add(doc.get("name") + ": " + finalScore); } return results; } public static void main(String[] args) throws Exception { List<Member> members = new ArrayList<>(); members.add(new Member("Tom", 0.8f)); members.add(new Member("Jerry", 0.7f)); members.add(new Member("Alice", 0.9f)); members.add(new Member("Bob", 0.6f)); MemberSearcher searcher = new MemberSearcher(members); List<String> results = searcher.search("Tom"); for (String result : results) { System.out.println(result); } } private static class Member { private final String name; private final float weight; public Member(String name, float weight) { this.name = name; this.weight = weight; } public String getName() { return name; } public float getWeight() { return weight; } } } ``` 在上面的示例代码中,我们将会员数据集合 members 添加到内存型索引中,并将每个会员的名称和权重信息分别存储为 StringField 和 FloatField 类型的字段。在查询时,我们创建一个 Query 对象,并执行搜索操作,获取搜索结果列表。对于每个搜索结果,我们通过其文档编号获取该会员的权重信息,并计算最终权重值。最后,我们将每个会员的名称和最终权重值拼接成字符串,并存储到结果列表中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值