JPA中的实体层次设计

1.Single Table Strategy ,单表策略,一张表包含基类与子类的所有数据,很多情况下都是采用这样的冗余设计,通过一个discriminator来区分

2.Table Per Class Strategy ,每个子类对应一张表,每张表都拥有基类的属性

3.Join Strategy ,仍然是每个子类对应一张表,但此表中不包含基类的属性,仅仅是此子类的扩展属性,共享基类的属性

以一个例子来说明3种情况:

一.单表策略

比如Pet作为基类,Cat和Dog继承此类并拥有自己的扩展属性,如:

package com.denny_blue.ejb3.inheritance;

import java.io.Serializable;

import javax.persistence.DiscriminatorColumn;
import javax.persistence.DiscriminatorType;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.Inheritance;
import javax.persistence.InheritanceType;

@Entity
@Inheritance(strategy = InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name = "animal_type", discriminatorType = DiscriminatorType.STRING)
public class Pet implements Serializable {
private int id;

private String name;

private double weight;

public Pet() {
}

@Id
@GeneratedValue(strategy = GenerationType.AUTO)
public int getId() {
return id;
}

public void setId(int id) {
this.id = id;
}

public String getName() {
return name;
}

public void setName(String name) {
this.name = name;
}

public double getWeight() {
return weight;
}

public void setWeight(double weight) {
this.weight = weight;
}

}

Pet 类值的注意的就是通过@Inheritance(strategy = InheritanceType.SINGLE_TABLE)确定采用单表策略,通过@DiscriminatorColumn确定了标志值的字段和类型,我想熟悉hibernate的朋友对这些都应该很熟悉.然后是两个子类:

//Cat.java

package com.denny_blue.ejb3.inheritance;

import javax.persistence.DiscriminatorColumn;
import javax.persistence.DiscriminatorType;
import javax.persistence.DiscriminatorValue;
import javax.persistence.Entity;
import javax.persistence.Inheritance;
import javax.persistence.InheritanceType;

@Entity
@Inheritance(strategy = InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(discriminatorType = DiscriminatorType.STRING)
@DiscriminatorValue("cat")
public class Cat extends Pet {
private String HairBall;

public String getHairBall() {
return HairBall;
}

public void setHairBall(String hairBall) {
HairBall = hairBall;
}

}

//Dog.java

package com.denny_blue.ejb3.inheritance;

import javax.persistence.DiscriminatorColumn;
import javax.persistence.DiscriminatorType;
import javax.persistence.DiscriminatorValue;
import javax.persistence.Entity;
import javax.persistence.Inheritance;
import javax.persistence.InheritanceType;

@Entity
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(discriminatorType=DiscriminatorType.STRING)
@DiscriminatorValue("dog")
public class Dog extends Pet {
private String trick;

public String getTrick() {
return trick;
}

public void setTrick(String trick) {
this.trick = trick;
}

}

两个子类最值的关注的就是@DiscriminatorValue注释,比如Cat的此值为cat,意味着当Cat类型的Entity存入数据库时,JPA 将自动把cat的值赋给animal_type字段,Dog的值则为dog,由此就可以在同一张表中区分开两个不同的子类.

二.Table per Class

采用Table Per Class策略的话,每个子类都将单独建表,并且都独立拥有基类中的所有属性,互相之间不共享,在我们的例子中所要进行的修改很小,像这样:

//基类

@Entity
@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)
public class Pet implements Serializable {
private int id;

private String name;

private double weight;

........

//子类:不需要任何设置

@Entity
public class Dog extends Pet {
private String trick;

.......

.......

三.Join策略

每个子类同样独立建表,基类也独立建表,只不过所有的子类的表中只有扩展属性,他们共享基类的表,在我们的例子中修改下即可:

//基类

@Entity
@Inheritance(strategy = InheritanceType.JOINED)
public class Pet implements Serializable {
private int id;

private String name;

private double weight;

........

//子类

@Entity

@Inheritance(strategy = InheritanceType.JOINED)
public class Dog extends Pet {
private String trick;
内容概要:本文提出了一种基于融合鱼鹰算法和柯西变异的改进麻雀优化算法(OCSSA),用于优化变分模态分解(VMD)的参数,进而结合卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)构建OCSSA-VMD-CNN-BILSTM模型,实现对轴承故障的高【轴承故障诊断】基于融合鱼鹰和柯西变异的麻雀优化算法OCSSA-VMD-CNN-BILSTM轴承诊断研究【西储大学数据】(Matlab代码实现)精度诊断。研究采用西储大学公开的轴承故障数据集进行实验验证,通过优化VMD的模态数和惩罚因子,有效提升了信号分解的准确性与稳定性,随后利用CNN提取故障特征,BiLSTM捕捉时间序列的深层依赖关系,最终实现故障类型的智能识别。该方法在提升故障诊断精度与鲁棒性方面表现出优越性能。; 适合人群:具备一定信号处理、机器学习基础,从事机械故障诊断、智能运维、工业大数据分析等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①解决传统VMD参数依赖人工经验选取的问题,实现参数自适应优化;②提升复杂工况下滚动轴承早期故障的识别准确率;③为智能制造与预测性维护提供可靠的技术支持。; 阅读建议:建议读者结合Matlab代码实现过程,深入理解OCSSA优化机制、VMD信号分解流程以及CNN-BiLSTM网络架构的设计逻辑,重点关注参数优化与故障分类的联动关系,并可通过更换数据集进一步验证模型泛化能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值