blog 搬家到csdn

博主表示要将自己的博客搬家到优快云,这体现了博主在平台选择上的新动向,可能是看重优快云在信息技术领域的资源和交流环境。
我的blog 要搬家到csdn
AI 代码审查Review工具 是一个旨在自动化代码审查流程的工具。它通过集成版本控制系统(如 GitHub 和 GitLab)的 Webhook,利用大型语言模型(LLM)对代码变更进行分析,并将审查意见反馈到相应的 Pull Request 或 Merge Request 中。此外,它还支持将审查结果通知到企业微信等通讯工具。 一个基于 LLM 的自动化代码审查助手。通过 GitHub/GitLab Webhook 监听 PR/MR 变更,调用 AI 分析代码,并将审查意见自动评论到 PR/MR,同时支持多种通知渠道。 主要功能 多平台支持: 集成 GitHub 和 GitLab Webhook,监听 Pull Request / Merge Request 事件。 智能审查模式: 详细审查 (/github_webhook, /gitlab_webhook): AI 对每个变更文件进行分析,旨在找出具体问题。审查意见会以结构化的形式(例如,定位到特定代码行、问题分类、严重程度、分析和建议)逐条评论到 PR/MR。AI 模型会输出 JSON 格式的分析结果,系统再将其转换为多条独立的评论。 通用审查 (/github_webhook_general, /gitlab_webhook_general): AI 对每个变更文件进行整体性分析,并为每个文件生成一个 Markdown 格式的总结性评论。 自动化流程: 自动将 AI 审查意见(详细模式下为多条,通用模式下为每个文件一条)发布到 PR/MR。 在所有文件审查完毕后,自动在 PR/MR 中发布一条总结性评论。 即便 AI 未发现任何值得报告的问题,也会发布相应的友好提示和总结评论。 异步处理审查任务,快速响应 Webhook。 通过 Redis 防止对同一 Commit 的重复审查。 灵活配置: 通过环境变量设置基
【直流微电网】径向直流微电网的状态空间建模与线性化:一种耦合DC-DC变换器状态空间平均模型的方法 (Matlab代码实现)内容概要:本文介绍了径向直流微电网的状态空间建模与线性化方法,重点提出了一种基于耦合DC-DC变换器的状态空间平均模型的建模策略。该方法通过数学建模手段对直流微电网系统进行精确的状态空间描述,并对其进行线性化处理,以便于系统稳定性分析与控制器设计。文中结合Matlab代码实现,展示了建模与仿真过程,有助于研究人员理解和复现相关技术,推动直流微电网系统的动态性能研究与工程应用。; 适合人群:具备电力电子、电力系统或自动化等相关背景,熟悉Matlab/Simulink仿真工具,从事新能源、微电网或智能电网研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握直流微电网的动态建模方法;②学习DC-DC变换器在耦合条件下的状态空间平均建模技巧;③实现系统的线性化分析并支持后续控制器设计(如电压稳定控制、功率分配等);④为科研论文撰写、项目仿真验证提供技术支持与代码参考。; 阅读建议:建议读者结合Matlab代码逐步实践建模流程,重点关注状态变量选取、平均化处理和线性化推导过程,同时可扩展应用于更复杂的直流微电网拓扑结构中,提升系统分析与设计能力。
//1.mesh构建 using System.Collections; using System.Collections.Generic; using UnityEngine; [RequireComponent(typeof(MeshFilter), typeof(MeshRenderer), typeof(MeshCollider))] public class Potteryprototype : MonoBehaviour {     MeshFilter meshFilter;     MeshRenderer meshRenderer;     MeshCollider meshCollider;     Mesh mesh;       public int details = 40;     public int layer = 20;     public float Height = 0.1f;       public float OuterRadius = 1.0f;     public float InnerRadius = 0.9f;       List<Vector3> vertices;     List<Vector2> UV;     List<int> triangles;       float EachAngle ;     int SideCount;       public MouseControl mouse;       void Start()     {         meshFilter = GetComponent<MeshFilter>();         meshCollider = GetComponent<MeshCollider>();         meshRenderer = GetComponent<MeshRenderer>();     }       [ContextMenu("GeneratePottery")]     void GeneratePrototype()     {         vertices = new List<Vector3>();         triangles = new List<int>();         UV = new List<Vector2>();           EachAngle = Mathf.PI * 2 / details;         for (int i = 0; i < layer; i++)         {             GenerateCircle(i);         }         Capping();                 mesh = new Mesh();         mesh.vertices = vertices.ToArray();         mesh.triangles = triangles.ToArray();         mesh.uv = UV.ToArray();           mesh.RecalculateBounds();         mesh.RecalculateTangents();           meshFilter.mesh = mesh;         mesh.RecalculateNormals();         meshCollider.sharedMesh = mesh;     }       void GenerateCircle(int _layer)     {         //外顶点与内顶点分开存储,方便变化操作时的计算         List<Vector3> vertices_outside = new List<Vector3>();         List<Vector3> vertices_inside = new List<Vector3>();                  List<Vector2> UV_outside = new List<Vector2>();         List<Vector2> UV_inside = new List<Vector2>();             //外侧和内侧顶点计算         //注意这里让每一圈的首尾重合了,也就是开始和结尾的顶点坐标一致         //目的是计算UV坐标时不会出现空缺         for (float i = 0; i <= Mathf.PI * 2+EachAngle; i += EachAngle)         {             Vector3 v1 = new Vector3(OuterRadius * Mathf.Sin(i),  _layer * Height, OuterRadius * Mathf.Cos(i));             Vector3 v2 = new Vector3(OuterRadius * Mathf.Sin(i),  (_layer +1)* Height, OuterRadius * Mathf.Cos(i));             Vector3 v3 = new Vector3(InnerRadius * Mathf.Sin(i),  _layer * Height, InnerRadius * Mathf.Cos(i));             Vector3 v4 = new Vector3(InnerRadius * Mathf.Sin(i),  (_layer+1) * Height, InnerRadius * Mathf.Cos(i));             vertices_outside.Add(v1); vertices_outside.Add(v2);             vertices_inside.Add(v3); vertices_inside.Add(v4);               Vector2 uv1 = new Vector2(i / Mathf.PI*2, _layer*1.0f / layer * 1.0f);             Vector2 uv2 = new Vector2(i / Mathf.PI*2, (_layer + 1)*1.0f / layer * 1.0f);             Vector2 uv3 = new Vector2(i / Mathf.PI*2, _layer*1.0f / layer * 1.0f);             Vector2 uv4 = new Vector2(i / Mathf.PI*2, (_layer + 1) *1.0f/ layer * 1.0f);             UV_outside.Add(uv1); UV_outside.Add(uv2);             UV_inside.Add(uv3); UV_inside.Add(uv4);         }         vertices.AddRange(vertices_outside);         vertices.AddRange(vertices_inside);           UV.AddRange(UV_outside);         UV.AddRange(UV_inside);           SideCount = vertices_outside.Count;         int j = vertices_outside.Count * _layer * 2;         int n = vertices_outside.Count;         for (int i = j; i < j + vertices_outside.Count - 2; i += 2)         {               triangles.Add(i); triangles.Add(i + 2); triangles.Add(i + 1);             triangles.Add(i + 2); triangles.Add(i + 3); triangles.Add(i + 1);               triangles.Add(i + n); triangles.Add(i + n + 1); triangles.Add(i + n + 2);             triangles.Add(i + n + 2); triangles.Add(i + n + 1); triangles.Add(i + n + 3);         }          }     //封顶,底面由于看不见就不用管了     void Capping()     {                 for (float i = 0; i <= Mathf.PI * 2+EachAngle; i += EachAngle)         {             Vector3 outer = new Vector3(OuterRadius * Mathf.Sin(i),layer * Height, OuterRadius * Mathf.Cos(i));             Vector3 inner= new Vector3(InnerRadius * Mathf.Sin(i), layer * Height, InnerRadius * Mathf.Cos(i));               vertices.Add(outer);vertices.Add(inner);               Vector2 uv1 = new Vector2(i / Mathf.PI * 2,0); Vector2 uv2 = new Vector2(i / Mathf.PI * 2, 1);                         UV.Add(uv1); UV.Add(uv2);         }         int j = SideCount * layer * 2;         for (int i=j;i<vertices.Count-2;i+=2)         {             triangles.Add(i);triangles.Add(i + 3);triangles.Add(i + 1);             triangles.Add(i);triangles.Add(i + 2);triangles.Add(i + 3);         }         triangles.Add(vertices.Count - 2);triangles.Add(j + 1);triangles.Add(vertices.Count - 1);         triangles.Add(vertices.Count - 2);triangles.Add(j);triangles.Add(j + 1);             } }   //2.动态改变形状 //这个函数放在Update()里调用     void GetMouseControlTransform()     {         //从屏幕鼠标位置发射一条射线到模型上,获取这个坐标         Ray ray = Camera.main.ScreenPointToRay(Input.mousePosition);         RaycastHit info;           if (Physics.Raycast(ray.origin, ray.direction, out info))         {               //在Unity中无法直接修改MeshFilter中Mesh的信息,需要新建一个Mesh修改其引用关系             Mesh mesh = meshFilter.mesh;             Vector3[] _vertices = mesh.vertices;               for (int i = 0; i < _vertices.Length; i++)             {                   //x,z平面变换                 //顶点移动与Y值的关系限制在5倍单层高度                 //这里可以自行修改,限制高度越大,曲线越平滑                 if (Mathf.Abs(info.point.y - transform.TransformPoint(_vertices[i]).y) < (5 * Height))                 {                     //计算顶点移动方向的向量                     Vector3 v_xz = (transform.TransformPoint(_vertices[i]) - new Vector3(transform.position.x, transform.TransformPoint(_vertices[i]).y, transform.position.z));                       //外顶点与内顶点移动时相对距离应该保持不变                     //因为我们知道顶点数组内的顺序关系,所以可以通过计算总顶点数除以每层单侧顶点数的商的奇偶关系来判断是外顶点还是内顶点                     int n = i / SideCount;                     bool side = n % 2 == 0;                     //判断顶面顶点内外关系                     bool caps = (i - (SideCount * layer * 2)) % 2 == 0;                       //限制每个顶点最大和最小的移动距离                     float max;                     float min;                     if (i < SideCount * layer * 2)                     {                         max = side ? 2f * OuterRadius : 2f * OuterRadius - (OuterRadius - InnerRadius);                           min = side ? 0.5f * OuterRadius : 0.5f * OuterRadius - (OuterRadius - InnerRadius);                     }                     else                     {                         max = caps ? 2f * OuterRadius : 2f * OuterRadius - (OuterRadius - InnerRadius); ;                         min = caps ? 0.5f * OuterRadius : 0.5f * OuterRadius - (OuterRadius - InnerRadius);                     }                     //计算当前顶点到鼠标Y值之间的距离,再用余弦函数算出实际位移距离                     float dif = Mathf.Abs(info.point.y - transform.TransformPoint(_vertices[i]).y);                     if (Input.GetKey(KeyCode.RightArrow))                     {                         float outer = max - v_xz.magnitude;                         _vertices[i] += v_xz.normalized * Mathf.Min(0.01f * Mathf.Cos(((dif / 5 * Height) * Mathf.PI) / 2), outer);                     }                     else if (Input.GetKey(KeyCode.LeftArrow))                     {                         float inner = v_xz.magnitude - min;                         _vertices[i] -= v_xz.normalized * Mathf.Min(0.01f * Mathf.Cos(((dif / 5 * Height) * Mathf.PI) / 2), inner);                     }                       //Y轴变换                     float scale_y = transform.localScale.y;                     if (Input.GetKey(KeyCode.UpArrow))                     {                         scale_y = Mathf.Min(transform.localScale.y + 0.000001f, 2.0f);                     }                     else if (Input.GetKey(KeyCode.DownArrow))                     {                           scale_y = Mathf.Max(transform.localScale.y - 0.000001f, 0.3f);                     }                     transform.localScale = new Vector3(transform.localScale.x, scale_y, transform.localScale.z);                   }                   mesh.vertices = _vertices;                 mesh.RecalculateBounds();                 mesh.RecalculateNormals();                 meshFilter.mesh = mesh;                 meshCollider.sharedMesh = mesh;             }         }     } }   //计算时就把顶点坐标系转换为自身坐标系,求得向量后再转换为世界坐标系     Vector3 v_xz = transform.TransformDirection(transform.InverseTransformPoint(_vertices[i]) - transform.InverseTransformPoint(new Vector3(0, _vertices[i].y, 0)));   //3.法线平均化 IEnumerator Print_Normals()     {              for (int i = 0; i < meshFilter.mesh.vertices.Length; i++)         {                if (i % 2 == 0)             {                 Debug.DrawRay(transform.TransformPoint(meshFilter.mesh.vertices[i]), transform.TransformDirection(meshFilter.mesh.normals[i] * 0.3f), Color.green, 1000f);             }             else             {                 Debug.DrawRay(transform.TransformPoint(meshFilter.mesh.vertices[i]), transform.TransformDirection(meshFilter.mesh.normals[i] * 0.3f), Color.blue, 1000f);             }               yield return new WaitForSeconds(Time.deltaTime);           }     }   //回到项目上来。这段法线计算的代码就不放上来了,大致就是根据顶点在数组中的下标去判断位置是否相同,然后把该顶点的法线相加即可。大家自己构建Mesh时的顶点顺序可能会不太一样。 以上代码是否有问题,请帮我完善
08-30
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值