DoCon标准安装文档

1. 软件介绍

DoConis

--------

a Computer Algebra program written in a purely functional, non-strict language Haskell.

Itjoins the categorial approach to the mathematical computation expressed via theHaskell type classes, and explicitprocessing of the domain descriptionterms.

Categorialapproach means that

-------------------------------

arithmeticand some other operations are defined under the verygeneric assumptions:"over any Euclidean ring", over any field,and so on,

theDomain Constructors are supported:

Fraction, Polynomial,Residue ring, and others,

thatis certain set of operations are defined automatically, following the domainconstructors.

Abilities

---------

(mostly,commutative algebra)

Mathematicallibrary:

*Operations with permutations

*Linear algebra over an Euclidean domain:reduction to the staircase anddiagonal forms of matrix, solving a system,

*Operations with fractions over a ring with GCD,

*Polynomial arithmetic inR[x1...xn], R a commutativering, various kinds of polynomialrepresentation

(univariate, multivariate,"recursive" form ...)

*g.c.d inR[x1...xn], R a factorial ring

*Factorization of bivariate polynomial over any finite field k, buildingfinite extension of k for the given dimension,

Hensel lift in R[x], for an Euclidean ring R.

*Groebner basis and syzygy generators in a free module over R[x1...xn],R an Euclidean ring;

*Some support for non-commutative polynomials over a commutative ring;

*Symmetric function package;

Categoryhierarchy expressed partially via the data classes:

*Set, Semigroup, Group, Ring, LinSolvRing ... LeftModule ...

*operations with the description terms ofSubset, Subgroup, Subring, Ideal...

Domainconstructors:

*Permutation

*Fraction field for a gcd-ring

*Direct product of Sets, (semi)Groups, Rings,Free (vector) module over a ring

*Matrix algebra over a commutative ring

*Polynomial algebra over a commutative ring: UPol, Pol, RPol models

*Vector module over a ring P, maybe, with Groebner bases structure

*Residue ring by the ideal: ResidueI,ResidueE models for the generic and Euclidean case.

Propertyprocessing:

*evaluation of certain small set of the most important algebraic property values is supported, such as Finite, IsCyclicGroup, IsMaximalIdeal, andothers.

官方网站:

http://www.botik.ru/pub/local/Mechveliani/docon/ (Russian site),

ftp.botik.ru/pub/local/Mechveliani/docon/ (same site),

http://www.haskell.org/docon/distrib/ (USA site)

2.软件版本

本文以docon2.11及配套的ghc-6.8.1-x86_64-unknown-linux.tar.bz2为例。

3.安装前要求

3.1. 需要ghc

我们推荐使用ghc-6.8.1。

4. 软件编译安装

4.1. 上传文件

上传源代码docon-2.11.zip和ghc-6.8.1-x86_64-unknown-linux.tar.bz2到/public/sourcecode目录下

4.2. 编译ghc

bunzip ghc-6.8.1-x86_64-unknown-linux.tar.bz2

tar xvfghc-6.8.1-x86_64-unknown-linux.tar

cd ghc-6.8.1

配置环境

./configure--prefix=/public/software/ghc-6.8.1

编译

make install

注册环境变量

echo “exportPATH=/public/software/ghc-6.8.1/bin:$PATH” >> /etc/profile.d/docon.sh

chmod 755/etc/profile.d/docon.sh

source/etc/profile.d/docon.sh

4.3. 编译docon

解压和环境准备

cp docon-2.11.zip/public/software/

cd /public/software/

unzip docon-2.11.zip

chmod 755 –R /public/software/docon

echo “export doconSource=/public/software/docon/source” >> /etc/profile.d/docon.sh

echo “export myCompilation= ...” >>/etc/profile.d/dodoc.sh

echo “echo doconCpOpt=-fglasgow-exts -fallow-undecidable-instances -fallow-overlapping-instances -fno-warn-overlapping-patterns-fwarn-unused-binds -fwarn-unused-matches -fwarn-unused-imports” >>/etc/profile.d/dodoc.sh

source /etc/profile.d/docon.sh

cd $doconSource

根据实际情况修改Makefile文件,如:

doconSource = /public/software/docon/source

configure:

runhaskell Setup.hs configure --ghc --prefix=/public/software/docon/source/inst-v

# \--enable-library-profiling

build:

runhaskell Setup.hs build

install:

runhaskell Setup.hs install --user

编译

make configure

make build

make install

5. 测试算例

cd $doconSource/demotest

ghc $doconCpOpt -Onot --make Main

./Main


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值