poj 3009 Curling 2.0-----搜索

Curling2.0游戏算法解析

Curling 2.0
Time Limit:1000MS Memory Limit:65536K
Total Submissions:6807 Accepted:2841

Description

On Planet MM-21, after their Olympic games this year, curling is getting popular. But the rules are somewhat different from ours. The game is played on an ice game board on which a square mesh is marked. They use only a single stone. The purpose of the game is to lead the stone from the start to the goal with the minimum number of moves.

Fig. 1 shows an example of a game board. Some squares may be occupied with blocks. There are two special squares namely the start and the goal, which are not occupied with blocks. (These two squares are distinct.) Once the stone begins to move, it will proceed until it hits a block. In order to bring the stone to the goal, you may have to stop the stone by hitting it against a block, and throw again.


Fig. 1: Example of board (S: start, G: goal)

The movement of the stone obeys the following rules:

  • At the beginning, the stone stands still at the start square.
  • The movements of the stone are restricted to x and y directions. Diagonal moves are prohibited.
  • When the stone stands still, you can make it moving by throwing it. You may throw it to any direction unless it is blocked immediately(Fig. 2(a)).
  • Once thrown, the stone keeps moving to the same direction until one of the following occurs:
    • The stone hits a block (Fig. 2(b), (c)).
      • The stone stops at the square next to the block it hit.
      • The block disappears.
    • The stone gets out of the board.
      • The game ends in failure.
    • The stone reaches the goal square.
      • The stone stops there and the game ends in success.
  • You cannot throw the stone more than 10 times in a game. If the stone does not reach the goal in 10 moves, the game ends in failure.


Fig. 2: Stone movements

Under the rules, we would like to know whether the stone at the start can reach the goal and, if yes, the minimum number of moves required.

With the initial configuration shown in Fig. 1, 4 moves are required to bring the stone from the start to the goal. The route is shown in Fig. 3(a). Notice when the stone reaches the goal, the board configuration has changed as in Fig. 3(b).


Fig. 3: The solution for Fig. D-1 and the final board configuration

Input

The input is a sequence of datasets. The end of the input is indicated by a line containing two zeros separated by a space. The number of datasets never exceeds 100.

Each dataset is formatted as follows.

the width(=w) and the height(=h) of the board
First row of the board

...
h-th row of the board

The width and the height of the board satisfy: 2 <=w<= 20, 1 <=h<= 20.

Each line consists ofwdecimal numbers delimited by a space. The number describes the status of the corresponding square.

0vacant square
1block
2start position
3goal position

The dataset for Fig. D-1 is as follows:

6 6
1 0 0 2 1 0
1 1 0 0 0 0
0 0 0 0 0 3
0 0 0 0 0 0
1 0 0 0 0 1
0 1 1 1 1 1

Output

For each dataset, print a line having a decimal integer indicating the minimum number of moves along a route from the start to the goal. If there are no such routes, print -1 instead. Each line should not have any character other than this number.

Sample Input

2 1
3 2
6 6
1 0 0 2 1 0
1 1 0 0 0 0
0 0 0 0 0 3
0 0 0 0 0 0
1 0 0 0 0 1
0 1 1 1 1 1
6 1
1 1 2 1 1 3
6 1
1 0 2 1 1 3
12 1
2 0 1 1 1 1 1 1 1 1 1 3
13 1
2 0 1 1 1 1 1 1 1 1 1 1 3
0 0

Sample Output

1
4
-1
4
10
-1



题目大意: 在冰上的推石头。 0 代表没有障碍物,1代表障碍物,2是起点,3是终点。 玩法,从起点开始,每次可以选择一个方向推出石头,中途不能停,必须撞到障碍物才能停下,同时 障碍物被打碎。求最少需要推几次。 出界算失败,超过十次也算失败。 如果 不能到终点 输出 -1。

思路: 模拟,深搜即可。

这道题很无语。 WA了很久。 后面 初始化一下地图就过了。

但是我没搞懂为什么每次要初始化 地图。 所有的搜索都是建立在地图内搜的。应该不需要每次都初始化地图吧? 求各位大神 解释解释。

还有,这题 我一开始想的是BFS,但是 遇到了 很多问题。地图上的同一个点可能会停多次,如果BFS 不好记录父亲, 暂时不知道怎么做, 各位大神试试 BFS怎么 做这道题吧,求教。


#include<stdio.h>
#include<string.h>
int map[30][30],min,w,h;
int dir[4][2]={{1,0},{-1,0},{0,1},{0,-1}};         //方向
void dfs(int x,int y, int count);
int main()
{
//	freopen("scar.txt","r",stdin);
	int i,j,stx,sty;
	while(scanf("%d%d",&w,&h)!=EOF && w)
	{
		memset(map,0,sizeof(map));        //主要就是这里 , 为什么一定要每次初始化?
		min=15;
		for(i=0;i<h;i++)
			for(j=0;j<w;j++)
			{
				scanf("%d",&map[i][j]);
				if(map[i][j]== 2)        //找出起点
				{
					map[i][j]=0;
					stx=i;
					sty=j;
				}
			}
		dfs(stx,sty,1);            
		printf("%d\n",min<15 ? min : -1);     //如果min的值未改变 则不能完成游戏.
	}
	return 0;
}
void dfs(int x,int y, int count)
{
	if(count > 10) return;
	for(int i=0;i<4;i++)
	{
		int tx=x+dir[i][0], ty=y+dir[i][1];
		if(map[tx][ty]== 3)          //如果直接能到终点
			if(count < min) min=count;
		while(map[tx][ty]==0 && tx <h && tx>=0 && ty< w && ty>=0)    //选择方向
		{
			tx=tx+dir[i][0];
			ty=ty+dir[i][1];
			if(map[tx][ty]==1)          //撞到障碍物,停下.
			{
				map[tx][ty]=0;          //撞碎障碍物.
				dfs(tx-dir[i][0],ty-dir[i][1],count+1);        //从新的点开始.同时 记下步数.
				map[tx][ty]=1;          //地图复原 .
				break;
			}
			if(map[tx][ty]==3)            //到达终点 
			{
				if(count< min) min=count;
				break;
			}
		}
	}
}


同步定位与地图构建(SLAM)技术为移动机器人或自主载具在未知空间中的导航提供了核心支撑。借助该技术,机器人能够在探索过程中实时构建环境地图并确定自身位置。典型的SLAM流程涵盖传感器数据采集、数据处理、状态估计及地图生成等环节,其核心挑战在于有效处理定位与环境建模中的各类不确定性。 Matlab作为工程计算与数据可视化领域广泛应用的数学软件,具备丰富的内置函数与专用工具箱,尤其适用于算法开发与仿真验证。在SLAM研究方面,Matlab可用于模拟传感器输出、实现定位建图算法,并进行系统性能评估。其仿真环境能显著降低实验成本,加速算法开发与验证周期。 本次“SLAM-基于Matlab的同步定位与建图仿真实践项目”通过Matlab平台完整再现了SLAM的关键流程,包括数据采集、滤波估计、特征提取、数据关联与地图更新等核心模块。该项目不仅呈现了SLAM技术的实际应用场景,更为机器人导航与自主移动领域的研究人员提供了系统的实践参考。 项目涉及的核心技术要点主要包括:传感器模型(如激光雷达与视觉传感器)的建立与应用、特征匹配与数据关联方法、滤波器设计(如扩展卡尔曼滤波与粒子滤波)、图优化框架(如GTSAM与Ceres Solver)以及路径规划与避障策略。通过项目实践,参与者可深入掌握SLAM算法的实现原理,并提升相关算法的设计与调试能力。 该项目同时注重理论向工程实践的转化,为机器人技术领域的学习者提供了宝贵的实操经验。Matlab仿真环境将复杂的技术问题可视化与可操作化,显著降低了学习门槛,提升了学习效率与质量。 实践过程中,学习者将直面SLAM技术在实际应用中遇到的典型问题,包括传感器误差补偿、动态环境下的建图定位挑战以及计算资源优化等。这些问题的解决对推动SLAM技术的产业化应用具有重要价值。 SLAM技术在工业自动化、服务机器人、自动驾驶及无人机等领域的应用前景广阔。掌握该项技术不仅有助于提升个人专业能力,也为相关行业的技术发展提供了重要支撑。随着技术进步与应用场景的持续拓展,SLAM技术的重要性将日益凸显。 本实践项目作为综合性学习资源,为机器人技术领域的专业人员提供了深入研习SLAM技术的实践平台。通过Matlab这一高效工具,参与者能够直观理解SLAM的实现过程,掌握关键算法,并将理论知识系统应用于实际工程问题的解决之中。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值