《Queries and interfaces》

本文介绍了文本检索中关键的预处理技术,包括停用词过滤、词干分析及拼写纠错。停用词过滤用于去除常见但无实际意义的词汇;词干分析则将词汇还原为其基本形式;而拼写纠错利用编辑距离等方法纠正用户输入错误。
部署运行你感兴趣的模型镜像
query 的停用词和词干分析

停用词比较简单,就是一些简单的单词,如to,for等词。但是单这些单词在一些特殊的组合中的时候是不能去除的。

词干分析:就是把一些单词的名词复数、形容词归一化的简单的名称。但是这种也有特殊情况,有的是不能简单的归一化的。这些词的复数或者ing形式一般会表示一些特殊的意义。
拼写纠错:拼写纠错一般的方法就是通过编辑距离来的。不过对于英文来说有一些规则:如果首字母很少修改;单词的长度不变。
当拼写纠错可能找到多种可能的时候,通过频率降序排列。把可能性大的放在最前面。

您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
SNMPv2 defines the get-bulk operation, which allows a management application to retrieve a large section of a table at once. The standard get operation can attempt to retrieve more than one MIB object at once, but message sizes are limited by the agent's capabilities. If the agent can't return all the requested responses, it returns an error message with no data. The get-bulk operation, on the other hand, tells the agent to send as much of the response back as it can. This means that incomplete responses are possible. Two fields must be set when issuing a get-bulk command: nonrepeaters and max-repetitions. Nonrepeaters tells the get-bulk command that the first N objects can be retrieved with a simple get-next operation. Max-repetitions tells the get-bulk command to attempt up to Mget-next operations to retrieve the remaining objects.   Assume we're requesting three bindings: sysDescr, ifInOctets, and ifOutOctets. The total number of variable bindings that we've requested is given by the formula N + (M * R), where N is the number of nonrepeaters (i.e., scalar objects in the request -- in this case 1, because sysDescr is the only scalar object), M is max-repetitions (in this case, we've set it arbitrarily to 3), and R is the number of nonscalar objects in the request (in this case 2, because ifInOctets and ifOutOctets are both nonscalar). Plugging in the numbers from this example, we get 1 + (3 * 2) = 7, which is the total number of variable bindings that can be returned by this get-bulk request.   The Net-SNMP package comes with a command for issuing get-bulk queries. If we execute this command using all the parameters previously discussed, it will look like the following:   $ snmpbulkget -v2c -B 1 3 linux.ora.com public sysDescr ifInOctets ifOutOctets   system.sysDescr.0 = "Linux linux 2.2.5-15 #3 Thu May 27 19:33:18 EDT 1999 i686"   interfaces.ifTable.ifEntry.ifInOctets.1 = 70840   interfaces.ifTable.ifEntry.ifOutOctets.1 = 70840   interfaces.ifTable.ifEntry.ifInOctets.2 = 143548020   interfaces.ifTable.ifEntry.ifOutOctets.2 = 111725152   interfaces.ifTable.ifEntry.ifInOctets.3 = 0   interfaces.ifTable.ifEntry.ifOutOctets.3 = 0   Since get-bulk is an SNMPv2 command, you have to tell snmpgetbulk to use an SNMPv2 PDU with the -v2c option. The nonrepeaters and max-repetitions are set with the -B 1 3 option. This sets nonrepeaters to 1 and max-repetitions to 3. Notice that the command returned seven variable bindings: one for sysDescr and three each for ifInOctets and ifOutOctets.            Non-repeaters and maxRepetitions   They are used in getBulk.   Definition of Non-repeaters:- The Non-repeater specifies the number of variables in the variable-bindings list for which a single OID (lexicographic successor) is to be returned.      Definition of maxRepetitions :- The max-repetitions specifies the number of OIDs (lexicographic successor)to be returned for the remaining variables (total variables - nonrepeaters)in the variable bindings list.      For clearer understanding, Let us assume Nonrepeater=4, and Max-Repetitions=3;      If get values with OID lists which are .1.3.6.1.2.1.11.1.0, .1.3.6.1.2.1.11.2.0 , .1.3.6.1.2.1.11.3.0, .1.3.6.1.2.1.11.4.0, .1.3.6.1.2.1.11.5.0, .1.3.6.1.2.1.11.6.0 , and the method is getNext.      NonRepeater value is 4. So the first four variable returns a single lexicographic successor.   Request OIDs ----> Response   .1.3.6.1.2.1.11.1.0 ---> .1.3.6.1.2.1.11.2.0 and its value   .1.3.6.1.2.1.11.2.0 ---> .1.3.6.1.2.1.11.3.0 and its value   1.3.6.1.2.1.11.3.0 ---> .1.3.6.1.2.1.11.4.0 and its value   .1.3.6.1.2.1.11.4.0 ---> .1.3.6.1.2.1.11.5.0 and its value      The subsequent OIDs in the OIDs list to be returned the number of max-repetitions lexicographic successor.   Request ---> Response   .1.3.6.1.2.1.11.5.0 --> .1.3.6.1.2.1.11.6.0, .1.3.6.1.2.1.11.7.0, .1.3.6.1.2.1.11.8.0 and its value.      Request ---> Response   .1.3.6.1.2.1.11.6.0 --> .1.3.6.1.2.1.11.7.0, .1.3.6.1.2.1.11.8.0 , .1.3.6.1.2.1.11.9.0 and its value.      So the response will be,      .1.3.6.1.2.1.11.2.0 and its value   .1.3.6.1.2.1.11.3.0 and its value   .1.3.6.1.2.1.11.4.0 and its value   .1.3.6.1.2.1.11.5.0 and its value   .1.3.6.1.2.1.11.6.0 and its value   .1.3.6.1.2.1.11.7.0 and its value   .1.3.6.1.2.1.11.7.0 and its value   .1.3.6.1.2.1.11.8.0 and its value   .1.3.6.1.2.1.11.8.0 and its value   .1.3.6.1.2.1.11.9.0 and its value
11-14
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值