Question :
Say you have an array for which theithelement is the price of a given stock on dayi.
If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the stock), design an algorithm to find the maximum profit.
for example: array[] = { 2, 5, 3, 8, 9, 4 } , maxProfit = 9 - 2 = 7.
Anwser 1 :
class Solution {
public:
int maxProfit(vector<int> &prices) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
if(prices.size() == 0) return 0;
int ret = 0;
int len = prices.size();
int maxPrice = prices[len-1];
for(int i = len - 1; i >= 0; i--){
maxPrice = max(prices[i], maxPrice); // maxPrice
ret = max(ret, maxPrice - prices[i]); // maxProfit
}
return ret;
}
};注意点:
最大利润,应该是先买的最低价与后卖的最高价的差值,因此需要考虑时间先后顺序
Anwser 2 :
class Solution {
public:
int maxProfit(vector<int> &prices) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
int maxp = 0;
int dp = 0;
for(int i = prices.size()-2; i >= 0 ;i--)
{
if(dp >= 0){
dp += (prices[i+1] - prices[i]);
} else {
dp = max(0, prices[i+1] - prices[i]);
}
maxp = max(dp, maxp);
}
return maxp;
}
};说明:
1) 此法把两数之间最大差,转化为了求两数组之间最大和
2) dp += (prices[i+1] - prices[i]) 实际上是 dp +=(prices[i+1] - prices[i]) +(prices[i] - prices[i-1]) +(prices[i-1] - prices[i-2]) + ... =(prices[i] - prices[j]) (i > j)
参考推荐:
本文介绍了一种寻找股票买卖最佳时机以获得最大利润的算法。该算法通过一次遍历找到买入最低价和卖出最高价之间的最大差值。提供了两种实现方案,一种是从后向前遍历并记录最高价和最大利润;另一种是利用动态规划思想,计算相邻价格间的最大正差值。
225

被折叠的 条评论
为什么被折叠?



