APACHE SPARK: RDD, DATAFRAME OR DATASET?

本文对比了Apache Spark中三种API:RDD、DataFrame与Dataset的特点。分析了每种API的优势与劣势,并提供了转换与操作示例。对于Java开发者来说,转向Scala可能更有利。

[from] http://www.agildata.com/apache-spark-rdd-vs-dataframe-vs-dataset/

 

Blog-InlineIMAGES-SparkAPIs

There Are Now 3 Apache Spark APIs. Here’s How to Choose the Right One

See Apache Spark 2.0 API Improvements: RDD, DataFrame, DataSet and SQL here.

Apache Spark is evolving at a rapid pace, including changes and additions to core APIs. One of the most disruptive areas of change is around the representation of data sets. Spark 1.0 used the RDD API but in the past twelve months, two new alternative and incompatible APIs have been introduced. Spark 1.3 introduced the radically different DataFrame API and the recently released Spark 1.6 release introduces a preview of the new Dataset API.

Many existing Spark developers will be wondering whether to jump from RDDs directly to the Dataset API, or whether to first move to the DataFrame API. Newcomers to Spark will have to choose which API to start learning with.

This article provides an overview of each of these APIs, and outlines the strengths and weaknesses of each one. A companion github repository provides working examples that are a good starting point for experimentation with the approaches outlined in this article.

Talk to a Spark expert. Contact Us.

The RDD (Resilient Distributed Dataset) API has been in Spark since the 1.0 release. This interface and its Java equivalent, JavaRDD, will be familiar to any developers who have worked through the standard Spark tutorials. From a developer’s perspective, an RDD is simply a set of Java or Scala objects representing data.

The RDD API provides many transformation methods, such as map()filter(), and reduce() for performing computations on the data. Each of these methods results in a new RDD representing the transformed data. However, these methods are just defining the operations to be performed and the transformations are not performed until an action method is called. Examples of action methods are collect() and saveAsObjectFile().

Example of RDD transformations and actions

Scala:

 

 

Java:

 

The main advantage of RDDs is that they are simple and well understood because they deal with concrete classes, providing a familiar object-oriented programming style with compile-time type-safety. For example, given an RDD containing instances of Person we can filter by age by referencing the age attribute of each Person object:

Example: Filter by attribute with RDD

Scala:

 

 

Java:

 

The main disadvantage to RDDs is that they don’t perform particularly well. Whenever Spark needs to distribute the data within the cluster, or write the data to disk, it does so using Java serialization by default (although it is possible to use Kryo as a faster alternative in most cases). The overhead of serializing individual Java and Scala objects is expensive and requires sending both data and structure between nodes (each serialized object contains the class structure as well as the values). There is also the overhead of garbage collection that results from creating and destroying individual objects.

DataFrame API

Spark 1.3 introduced a new DataFrame API as part of the Project Tungsten initiative which seeks to improve the performance and scalability of Spark. The DataFrame API introduces the concept of a schema to describe the data, allowing Spark to manage the schema and only pass data between nodes, in a much more efficient way than using Java serialization. There are also advantages when performing computations in a single process as Spark can serialize the data into off-heap storage in a binary format and then perform many transformations directly on this off-heap memory, avoiding the garbage-collection costs associated with constructing individual objects for each row in the data set. Because Spark understands the schema, there is no need to use Java serialization to encode the data.

The DataFrame API is radically different from the RDD API because it is an API for building a relational query plan that Spark’s Catalyst optimizer can then execute. The API is natural for developers who are familiar with building query plans, but not natural for the majority of developers. The query plan can be built from SQL expressions in strings or from a more functional approach using a fluent-style API.

Example: Filter by attribute with DataFrame

Note that these examples have the same syntax in both Java and Scala

SQL Style

 

 

Expression builder style:

 

Because the code is referring to data attributes by name, it is not possible for the compiler to catch any errors. If attribute names are incorrect then the error will only detected at runtime, when the query plan is created.

Another downside with the DataFrame API is that it is very scala-centric and while it does support Java, the support is limited. For example, when creating a DataFrame from an existing RDD of Java objects, Spark’s Catalyst optimizer cannot infer the schema and assumes that any objects in the DataFrame implement the scala.Product interface. Scala case classes work out the box because they implement this interface.

Dataset API

The Dataset API, released as an API preview in Spark 1.6, aims to provide the best of both worlds; the familiar object-oriented programming style and compile-time type-safety of the RDD API but with the performance benefits of the Catalyst query optimizer. Datasets also use the same efficient off-heap storage mechanism as the DataFrame API.

When it comes to serializing data, the Dataset API has the concept of encoders which translate between JVM representations (objects) and Spark’s internal binary format. Spark has built-in encoders which are very advanced in that they generate byte code to interact with off-heap data and provide on-demand access to individual attributes without having to de-serialize an entire object. Spark does not yet provide an API for implementing custom encoders, but that is planned for a future release.

Additionally, the Dataset API is designed to work equally well with both Java and Scala. When working with Java objects, it is important that they are fully bean-compliant. In writing the examples to accompany this article, we ran into errors when trying to create a Dataset in Java from a list of Java objects that were not fully bean-compliant.

Need help with Spark APIs? Contact Us.

Example: Creating Dataset from a list of objects

Scala

 

 

Java

 

Transformations with the Dataset API look very much like the RDD API and deal with the Person class rather than an abstraction of a row.

Example: Filter by attribute with Dataset

Scala

 

 

Java

 

Despite the similarity with RDD code, this code is building a query plan, rather than dealing with individual objects, and if age is the only attribute accessed, then the rest of the the object’s data will not be read from off-heap storage.

Get started with your Big Data Strategy. Contact Us.

Conclusions

If you are developing primarily in Java then it is worth considering a move to Scala before adopting the DataFrame or Dataset APIs. Although there is an effort to support Java, Spark is written in Scala and the code often makes assumptions that make it hard (but not impossible) to deal with Java objects.

If you are developing in Scala and need your code to go into production with Spark 1.6.0 then the DataFrame API is clearly the most stable option available and currently offers the best performance.

However, the Dataset API preview looks very promising and provides a more natural way to code. Given the rapid evolution of Spark it is likely that this API will mature very quickly through 2016 and become the de-facto API for developing new applications.

See Apache Spark 2.0 API Improvements: RDD, DataFrame, DataSet and SQL here.

<think>好的,用户现在的问题是关于如何根据业务需求选择Spark中的RDDDataFrameDataset。首先,我需要回顾一下之前用户的问题和我的回答,确保这次回答的连贯性。用户之前询问了Spark RDD的弹性能力,而我详细解释了动态资源调整、容错机制、高效数据恢复、计算灵活性和资源弹性扩展等方面,并引用了相关文献。现在用户想了解如何根据业务场景选择这三种数据结构,所以需要结合之前的RDD知识,扩展到DataFrameDataset的比较。 用户提供的参考资料中,引用[1]提到了使用coalesce优化RDD分区,引用[2]涉及数据源接收器,引用[3]讨论了并行度。但这些引用可能与当前问题关联不大,不过需要注意用户可能希望我参考之前的回答结构,比如分点说明、使用表格总结等。 首先,我应该明确RDDDataFrameDataset的区别和各自的优缺点。RDD是弹性分布式数据集,提供低层次的操作和灵活性,但需要手动优化;DataFrame以列式存储,具有优化引擎的优势;Dataset结合了RDD的类型安全和DataFrame的优化。 接下来需要考虑用户可能的业务场景类型,比如需要低层次控制、结构化数据处理、类型安全需求、性能优化等。同时,用户可能想知道在什么情况下选择哪种结构更合适,例如ETL处理、机器学习、实时分析等。 我需要列举每种数据结构的适用场景,并给出具体的例子,比如RDD适合非结构化数据或复杂的数据处理逻辑,DataFrame适合SQL查询和结构化数据,Dataset适合需要类型安全和复杂业务逻辑的情况。 同时,用户可能关心性能方面的比较,比如Catalyst优化器和Tungsten引擎对DataFrameDataset的影响,以及RDD的执行计划优化较少。需要强调在需要高性能时,优先考虑DataFrameDataset。 另外,API的易用性也是一个考量因素。RDD的API更函数式,适合开发者习惯;而DataFrameDataset的API更声明式,适合数据分析师使用SQL或DataFrame操作。 还要注意数据集的大小和类型。如果数据是半结构化或非结构化的,如文本、日志,RDD可能更合适;而结构化数据如CSV、JSON更适合DataFrame/Dataset。 最后,需要总结成一个对比表格,帮助用户一目了然地看到区别,并给出选择建议,比如优先选择Dataset(当使用ScalaJava时),或者在需要灵活性和控制时选择RDD。 需要确保回答结构清晰,分点说明,结合之前的引用内容,比如提到优化时引用[1]中的coalesce操作可能属于RDD的优化策略,但当前问题更关注结构选择,所以可能不直接相关,但可以提一下优化时的不同方式。 可能还需要提到版本兼容性,比如Dataset主要在ScalaJava中支持,而Python和R只有DataFrame,这点对用户选择也很重要。 总结思考步骤:先区分三者的特性和优缺点,然后分析不同业务场景的需求,匹配最适合的结构,最后给出实际例子和总结表格。</think>--- ### Spark数据处理结构选择指南(RDD/DataFrame/Dataset) 根据业务需求选择Spark数据结构时,需综合考量**数据类型**、**开发效率**、**执行性能**和**功能特性**四大维度。以下是具体对比与选择策略: --- #### 一、核心特性对比 | 特性 | RDD | DataFrame | Dataset(仅Scala/Java) | |---------------------|------------------------------|------------------------------|------------------------------| | **数据格式** | 任意对象(无模式) | 结构化数据(行+列,有模式) | 类型化对象(编译时类型安全) | | **优化级别** | 无自动优化 | Catalyst优化器 + Tungsten引擎 | Catalyst优化器 + Tungsten引擎 | | **执行方式** | 函数式编程(map/filter等) | SQL/DSL声明式操作 | 混合式(函数式+声明式) | | **性能** | 较低(需手动优化) | 高(自动优化列式存储) | 高(类型安全+优化引擎) | | **容错机制** | Lineage血统恢复 | Lineage血统恢复 | Lineage血统恢复 | --- #### 二、选择策略与适用场景 ##### 1. **优先选择RDD的场景** - **非结构化/半结构化数据** 如文本日志、自定义二进制数据,需手动解析和处理时,RDD的`map`、`flatMap`等操作更灵活[^1]。 ```scala val logs = sc.textFile("hdfs://logs/*.log") val errors = logs.filter(_.contains("ERROR")) ``` - **需要细粒度控制** 如自定义分区策略(`HashPartitioner`)、手动控制数据分布或依赖关系(窄/宽依赖优化)。 - **复杂数据转换逻辑** 例如嵌套循环、递归处理等无法用SQL表达的场景。 ##### 2. **优先选择DataFrame的场景** - **结构化数据分析** 如CSV、JSON、Parquet等格式数据,直接利用内置Schema推断和列式存储优化[^3]。 ```python df = spark.read.json("data.json") df.filter(df["age"] > 30).groupBy("city").count() ``` - **SQL兼容性需求** 支持直接运行SQL查询,适合数据分析师或已有SQL逻辑迁移。 ```sql CREATE TEMP VIEW users AS SELECT * FROM parquet.`path/to/data`; SELECT department, AVG(salary) FROM users GROUP BY department; ``` - **性能敏感型任务** Catalyst优化器自动优化执行计划(谓词下推、列裁剪等),Tungsten引擎提升内存效率。 ##### 3. **优先选择Dataset的场景** - **类型安全与编译检查** 适合强类型语言(Scala/Java),避免运行时错误。 ```scala case class User(name: String, age: Int) val ds: Dataset[User] = spark.read.json("users.json").as[User] ds.filter(_.age > 30) // 编译时类型检查 ``` - **混合编程范式** 结合RDD的函数式操作和DataFrame的优化能力,例如ETL链路中既有复杂业务逻辑又需高效Join。 - **领域对象映射** 如将数据库实体直接映射为类型化对象,支持面向领域的设计。 --- #### 三、关键决策因素 | 因素 | RDD | DataFrame/Dataset | |---------------------|------------------------------|------------------------------| | **数据复杂度** | 高(非结构化、自定义格式) | 低(结构化、固定模式) | | **开发效率** | 低(需手动优化) | 高(声明式API + 自动优化) | | **性能需求** | 容忍较低性能 | 要求高性能(优化引擎加速) | | **团队技能栈** | 熟悉函数式编程 | 熟悉SQL或数据分析工具 | --- #### 四、典型案例分析 1. **实时日志分析(RDD)** - 场景:解析自定义格式的服务器日志,提取错误信息并统计频率。 - 选择理由:需灵活处理原始文本,无固定Schema。 2. **数据仓库查询(DataFrame)** - 场景:从Parquet文件中聚合销售额并按地区排名。 - 选择理由:结构化数据 + SQL优化,直接利用`groupBy`和窗口函数。 3. **机器学习流水线(Dataset)** - 场景:读取类型化特征数据,执行特征工程并训练模型。 - 选择理由:类型安全保证特征字段正确性,同时享受优化性能。 --- #### 五、混合使用建议 - **RDDDataFrame互转** 通过`rdd.toDF()`或`spark.createDataFrame(rdd, schema)`实现数据共享。 - **性能瓶颈优化** 若Dataset操作无法满足性能需求,可降级为RDD手动优化(如分区调整[^1])。 --- **总结选择优先级**: 1. **结构化数据 + SQL操作** → DataFrame 2. **类型安全 + 复杂业务逻辑** → DatasetScala/Java) 3. **非结构化数据 + 自定义处理** → RDD --- **相关问题** 1. 如何通过Catalyst优化器提升DataFrame查询性能? 2. Dataset的类型安全机制如何避免运行时错误? 3. 在Spark 3.0中,RDDDataset的API有何融合趋势? [^1]: Spark优化解析:RDD分区调整与性能优化 [^3]: Apache Spark并行度与执行效率分析
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值