Closure coding convention suggestion - Ext JS

本文通过解析《EventManager.js》中的具体实例,指出使用闭包保护顶级对象局部变量的做法可能带来的阅读障碍,并建议采用括号包裹函数声明的方式以提高代码可读性。
Hi Jack,

I'm certainly not as productive / good as you are (that's an overstatement, I'm way way less productive than you are) but while reading your code there are certain things I wish you'd have done that will make life much easier for the reader.

In many occassion you'd use a closure to protect the local variables when you define a top level objects

For instance while I was reading EventManager.js

at the beginning I see

Ext.EventManager = function(){
 .............
 600 lines below
}
At first glance I was thinking that this

function(){...}
is the constructor of Ext.EventManager.

Not until I see something like
var pub = {.........}
I start to feel strange and then at at line 321 I see

return pub;
Of course at line 322 we can cleanly see that it is a closure.

}();

So my humble opinion is that if we wrap the function{} literal in parenthesis then it would be very clear from the start that it is not a constructor but a closure.

So instead of

function() {
......
600 lines
......
}();
this would be much easier to read.

(function() {
......
600 lines
......
})();
I hope this makes sense. Maybe 10 years later this will help you pickup ext1.0 again faster :-)
Reply With Quote
  #2  
Old 03-06-2007, 08:15 PM
Default

Considering how I am constantly trying to trim bytes, adding extra ones that serve no purpose doesn't look too appealing. At the top of the file and in the docs it is defined with @singleton (right before the closure starts) which should signal for you that it is a closure (since it can't be a constructor).
Reply With Quote
内容概要:本文围绕六自由度机械臂的人工神经网络(ANN)设计展开,重点研究了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程,并通过Matlab代码实现相关算法。文章结合理论推导与仿真实践,利用人工神经网络对复杂的非线性关系进行建模与逼近,提升机械臂运动控制的精度与效率。同时涵盖了路径规划中的RRT算法与B样条优化方法,形成从运动学到动力学再到轨迹优化的完整技术链条。; 适合人群:具备一定机器人学、自动控制理论基础,熟悉Matlab编程,从事智能控制、机器人控制、运动学六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)建模等相关方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握机械臂正/逆运动学的数学建模与ANN求解方法;②理解拉格朗日-欧拉法在动力学建模中的应用;③实现基于神经网络的动力学补偿与高精度轨迹跟踪控制;④结合RRT与B样条完成平滑路径规划与优化。; 阅读建议:建议读者结合Matlab代码动手实践,先从运动学建模入手,逐步深入动力学分析与神经网络训练,注重理论推导与仿真实验的结合,以充分理解机械臂控制系统的设计流程与优化策略。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值