Using *Field outside of an editor grid - Ext JS

本文讨论了如何在ExtJS框架中用NumberField组件替换普通的文本输入框,以实现数值输入的有效验证和管理。提供了创建NumberField实例并将其应用于特定ID元素的方法。
The Number|Text etc fields are very useful in my grids, so I'd like to use them in forms otherwise. Following the path of inheritance is pretty difficult... can anybody tell me what I might do to replace an ordinary input type='text', for example, with a NumberField?

thanks!
Reply With Quote
  #2  
Old 03-15-2007, 08:01 PM
Default

var x = new Ext.form.NumberField();
x.applyTo("id");
Reply With Quote
  #3  
Old 03-15-2007, 08:13 PM
Default

Quote:
Originally Posted by harley.333
var x = new Ext.form.NumberField();
x.applyTo("id");
Thanks!
Reply With Quote
  #4  
Old 03-15-2007, 10:54 PM
Default

Have a look at the form example which isn't in the doc menu yet. It's not fully finished, but works and has lots of samples for exactly this.
Reply With Quote
  #5  
Old 03-15-2007, 11:17 PM
Default

I blogged about the inheritance chain of the form fields about a week ago. Also have some of the undocumented properties of the TextField config options. As always, it's undocumented and we're dealing with alpha code; so don't take any of this as being 'stable'.

http://www.divergingpath.com/index.c...eld-Validation
Reply With Quote
### 近场天线测量概述 #### 定义与重要性 近场天线测量是指在距离天线很短的距离内(通常小于波长的一半),通过探针或其他传感器获取电磁场分布的技术。这种技术对于理解天线性能至关重要,尤其是在复杂环境中工作的小型化和集成化的现代通信系统中。 #### 测量原理 近场扫描依赖于探测器靠近被测天线表面移动,记录下不同位置处的电场强度或磁场强度数据。由于这些区域内的场强变化剧烈且不遵循远场条件下的简单衰减规律,因此需要高精度的空间分辨率来进行详尽的数据采集[^1]。 #### 数据处理方法 收集到的原始近场数据经过傅里叶变换等数学工具转化为更易于解释的形式——即所谓的“远场模式”。这一过程涉及到复杂的计算模型以及专门软件的支持,目的是为了重建出完整的辐射特性图样,从而评估诸如增益、方向性和极化属性等关键参数。 #### 应用场景 除了传统的无线电工程领域外,随着物联网(IoT)的发展和个人电子产品的普及,越来越多的应用场合需要用到精确控制下的小型高效能天线设计;而近场测试正是实现这一点不可或缺的一部分。此外,在某些特殊情况下,比如医疗成像或者安全检测方面也可能会采用类似的原理和技术手段[^3]。 ```python import numpy as np from scipy import fftpack def near_field_to_far_field(near_field_data): """ Converts near-field measurement data into far-field patterns using FFT. Parameters: near_field_data (np.array): Complex-valued array representing measured E/H fields Returns: tuple: Tuple containing theta and phi components of the far-field pattern """ # Perform 2D Fast Fourier Transform on input matrix transformed = fftpack.fftshift(fftpack.fftn(near_field_data)) # Extract polar coordinates from Cartesian grid points used during sampling r, c = near_field_data.shape y, x = np.indices((r,c)) - int(r/2), np.indices((r,c)) - int(c/2) rho = np.sqrt(x**2 + y**2).flatten() phi = np.arctan2(y,x).flatten() return transformed.flatten(), rho, phi ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值