BlazeDS client architecture

本文介绍了BlazeDS客户端架构,包括Flex组件如何通过不同类型的通道与BlazeDS服务器交互,以及消息传递机制。深入探讨了请求/响应及发布/订阅两种模式的应用。

BlazeDS client architecture

BlazeDS clients use a message-based framework provided by BlazeDS to interact with the server. On the client side of the message-based framework are channels that encapsulate the connection behavior between the Flex client and the BlazeDS server. Channels are grouped together into channel sets that are responsible for channel hunting and channel failover. For information about client class APIs, see the ActionScript 3.0 Language Reference .

The following illustration shows the BlazeDS client architecture:

The LiveCycle Data Services ESBlazeDS client architecture

Flex components

The following Flex components interact with a BlazeDS server:

  • RemoteObject
  • HTTPService
  • WebService
  • Producer
  • Consumer

All of these components are included in the Flex SDK in the rpc.swc component library.

Although the RemoteObject, Producer, and Consumer components are included with the Flex SDK, they require a server that can interpret the messages that they send. The BlazeDS and LiveCycle Data Services ES servers are two examples of such servers. A Flex application can also make direct HTTP service or web service calls to remote servers without BlazeDS in the middle tier. However, going through the BlazeDS Proxy Service is beneficial for several reasons; for more information, see Using HTTP and web services .

Client-side components communicate with services on the BlazeDS server by sending and receiving messages of the correct type. For more information about messages, see Messages .

Channels and channel sets

A Flex component uses a channel to communicate with a BlazeDS server. A channel set contains channels; its primary function is to provide connectivity between the Flex client and the BlazeDS server. A channel set contains channels ordered by preference. The Flex component tries to connect to the first channel in the channel set and in the case where a connection cannot be established falls back to the next channel in the list. The Flex component continues to go through the list of channels in the order in which they are specified until a connection can be established over one of the channels or the list of channels is exhausted.

Channels encapsulate the connection behavior between the Flex components and the BlazeDS server. Conceptually, channels are a level below the Flex components and they handle the communication between the Flex client and the BlazeDS server. They communicate with their corresponding endpoints on the BlazeDS server; for more information about endpoints, see Endpoints .

Flex clients can use different channel types such as the AMFChannel and HTTPChannel. Channel selection depends on a number of factors, including the type of application you are building. If non-binary data transfer is required, you would use the HTTPChannel, which uses a non-binary format called AMFX (AMF in XML). For more information about channels, see Channels and endpoints .

Messages

All communication between Flex client components and BlazeDS is performed with messages. Flex components use several message types to communicate with their corresponding services in BlazeDS. All messages have client-side (ActionScript) implementations and server-side (Java) implementations because the messages are serialized and deserialized on both the client and the server. You can also create messages directly in Java and have those messages delivered to clients using the server push API.

Some message types, such as AcknowledgeMessage and CommandMessage, are used across different Flex components and BlazeDS services. Other message types are used by specific Flex components and BlazeDSservices. For example, to have a Producer component send a message to subscribed Consumer components, you create a message of type AsyncMessage and pass it to the send() method of the Producer component.

In other situations, you do not write code for constructing and sending messages. For example, you simply use a RemoteObject component to call the remote method from the Flex application. The RemoteObject component creates a RemotingMessage to encapsulate the RemoteObject call. In response it receives an AcknowledgeMessage from the server. The AcknowledgeMessage is encapsulated in a ResultEvent in the Flex application.

Sometimes you must create a message to send to the server. For example, you could send a message by creating an AsyncMessage and passing it to a Producer.

BlazeDS uses two patterns for sending and receiving messages: the request/reply pattern and the publish/subscribe pattern. RemoteObject, HTTPService, and WebService components use the request/reply message pattern, in which the Flex component makes a request and receives a reply to that request. Producer and Consumer components use the publish/subscribe message pattern. In this pattern, the Producer publishes a message to a destination defined on the BlazeDS server. All Consumers subscribed to that destination receive the message.

基于51单片机,实现对直流电机的调速、测速以及正反转控制。项目包含完整的仿真文件、源程序、原理图和PCB设计文件,适合学习和实践51单片机在电机控制方面的应用。 功能特点 调速控制:通过按键调整PWM占空比,实现电机的速度调节。 测速功能:采用霍尔传感器非接触式测速,实时显示电机转速。 正反转控制:通过按键切换电机的正转和反转状态。 LCD显示:使用LCD1602液晶显示屏,显示当前的转速和PWM占空比。 硬件组成 主控制器:STC89C51/52单片机(与AT89S51/52、AT89C51/52通用)。 测速传感器:霍尔传感器,用于非接触式测速。 显示模块:LCD1602液晶显示屏,显示转速和占空比。 电机驱动:采用双H桥电路,控制电机的正反转和调速。 软件设计 编程语言:C语言。 开发环境:Keil uVision。 仿真工具:Proteus。 使用说明 液晶屏显示: 第一行显示电机转速(单位:转/分)。 第二行显示PWM占空比(0~100%)。 按键功能: 1键:加速键,短按占空比加1,长按连续加。 2键:减速键,短按占空比减1,长按连续减。 3键:反转切换键,按下后电机反转。 4键:正转切换键,按下后电机正转。 5键:开始暂停键,按一下开始,再按一下暂停。 注意事项 磁铁和霍尔元件的距离应保持在2mm左右,过近可能会在电机转动时碰到霍尔元件,过远则可能导致霍尔元件无法检测到磁铁。 资源文件 仿真文件:Proteus仿真文件,用于模拟电机控制系统的运行。 源程序:Keil uVision项目文件,包含完整的C语言源代码。 原理图:电路设计原理图,详细展示了各模块的连接方式。 PCB设计:PCB布局文件,可用于实际电路板的制作。
【四旋翼无人机】具备螺旋桨倾斜机构的全驱动四旋翼无人机:建模与控制研究(Matlab代码、Simulink仿真实现)内容概要:本文围绕具备螺旋桨倾斜机构的全驱动四旋翼无人机展开研究,重点进行了系统建模与控制策略的设计与仿真验证。通过引入螺旋桨倾斜机构,该无人机能够实现全向力矢量控制,从而具备更强的姿态调节能力和六自由度全驱动特性,克服传统四旋翼欠驱动限制。研究内容涵盖动力学建模、控制系统设计(如PID、MPC等)、Matlab/Simulink环境下的仿真验证,并可能涉及轨迹跟踪、抗干扰能力及稳定性分析,旨在提升无人机在复杂环境下的机动性与控制精度。; 适合人群:具备一定控制理论基础和Matlab/Simulink仿真能力的研究生、科研人员及从事无人机系统开发的工程师,尤其适合研究先进无人机控制算法的技术人员。; 使用场景及目标:①深入理解全驱动四旋翼无人机的动力学建模方法;②掌握基于Matlab/Simulink的无人机控制系统设计与仿真流程;③复现硕士论文级别的研究成果,为科研项目或学术论文提供技术支持与参考。; 阅读建议:建议结合提供的Matlab代码与Simulink模型进行实践操作,重点关注建模推导过程与控制器参数调优,同时可扩展研究不同控制算法的性能对比,以深化对全驱动系统控制机制的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值