网络最大流问题 poj1273 Drainage Ditches

本文探讨了网络最大流问题的解决方法,采用广度优先搜索算法进行路径查找,并通过C语言实现,优化了流量分配过程,实现了15ms内的高效求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

网络最大流问题。 其实想法很直观,就是找一条流的路径,然后取这条路径上的最大流量,然后更新约束条件,然后再找这样的路径。。。直到没有能继续的路径。

找路径的方法使用的是广度优先搜索。

ps:最近在练习c语言,c语言虽然用起来比c++墨迹,各种注意事项,但是运行速度上跟c++的确不在一个量级上。

15ms AC,源代码:

/* * ===================================================================================== * * Filename: 1273.c * * Description: * * Version: 1.0 * Created: 2011年12月06日 23时51分07秒 * Revision: none * Compiler: gcc * * Author: MaZheng (blog.youkuaiyun.com/mazheng1989), mazheng19891019@gmail.com * Company: Dalian University Of Technology * * ===================================================================================== */ #include<stdio.h> #include<stdlib.h> #include<limits.h> #define NUM 220 #define minum(a,b) a<b?(a):(b) //please declare parameters here int s,t; int N,M; int flow[NUM][NUM]; int pre[NUM]; char visited[NUM]; int queue[NUM]; //please declare functions here. void Input() { s=1; t=M; int Si,Ei,Ci; int i,j; for(i=1;i<=M;i++) { for(j=1;j<=M;j++) { flow[i][j]=0; } } for(i=0;i<N;i++) { scanf("%d %d %d",&Si,&Ei,&Ci); flow[Si][Ei]+=Ci; } } void Output() { int i,j; for(i=1;i<=M;i++) { for(j=1;j<=M;j++) { printf("%d ",flow[i][j]); } printf("\n"); } printf("\n"); } int bfs() { int i; for(i=1;i<=M;i++) { visited[i]=0; } int front=0,tail=0; queue[tail++]=s; visited[s]=1; int u,v; int min=INT_MAX; while(front<tail) { u=queue[--tail]; if(u==t) return min; for(v=2;v<=M;v++) { if(visited[v]==0&&flow[u][v]>0) { queue[tail++]=v; pre[v]=u; min=minum(min,flow[u][v]); visited[v]=1; } } } return 0; } int EK() { int m,v,u; int count=0; while(1) { m=bfs(); if(m==0) break; count+=m; v=t; while(v!=s) { u=pre[v]; flow[v][u]+=m; flow[u][v]-=m; v=u; } // Output(); } return count; } int main() { freopen("input.txt","r",stdin); //input your ... while(scanf("%d %d",&N,&M)!=EOF) { Input(); // Output(); printf("%d\n",EK()); } return 0; }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值