hadoop单元测试方法--使用和增强MRUnit[1]

本文介绍了如何使用并增强MRUnit框架来进行Hadoop MapReduce的单元测试,包括MapDriver、ReduceDriver、MapReduceDriver的使用方法,并解决了一些常见的问题,如不支持MultipleOutputs和从文件加载数据集。

 

hadoop单元测试方法--使用和增强MRUnit


1前言

         hadoopmapreduce提交到集群环境中出问题的定位是比较麻烦的,有时需要一遍遍的修改代码和打出日志来排查一个很小的问题,如果数据量大的话调试起来相当耗时间。因此有必要使用良好的单元测试手段来尽早的消除明显的bug(当然仅有单元测试是不够的,毕竟跟集群的运行环境还是不一样的)。

       然而做mapreduce的单元测试会有一些障碍,比如MapReduce一些参数对象是在运行时由hadoop框架传入的,例如OutputCollectorReporterInputSplit等。这就需要有Mock手段。最初写mapreduce单元测试的时候自己写了几个简单的Mock也基本能满足需要,后来发现MRUnit比我写的要好用所以研究了一下就采用了。MRUnit是专门为hadoop mapreduce写的单元测试框架,API简洁明了,简单实用。但也有一些薄弱的地方,比如不支持MultipleOutputs(很多情况下我们会用MultipleOutputs作为多文件输出,后面将介绍如何增强MRUnit使之支持MultipleOutputs)。

2 MRUnit

         MRUnit针对不同测试对象分别使用以下几种Driver

MapDriver,针对单独的Map测试。

ReduceDriver,针对单独的Reduce测试。

MapReduceDriver,将MapReduce连贯起来测试。

PipelineMapReduceDriver,将多个Map-Reduce pair贯串测试。

MapDriver

         单独测试Map的例子,假设我们要计算一个卖家的平均发货速度。Map将搜集每一次发货的时间间隔。针对Map的测试,

         //这是被测试的Map

    private Map mapper;

    private MapDriver<LongWritable, Text, Text, TimeInfo> mapDriver;

    @Before

    public void setUp() {

        mapper = new Map();

        mapDriver = new MapDriver<LongWritable, Text, Text, TimeInfo>();

    }

 

    @Test

    public void testMap_timeFormat2() {

        String sellerId = "444";

        //模拟输入一行(withInput),假设从这行数据中我们可以获得卖家(sellerId)      //某一次时间间隔 10小时.

       //我们期望它输出sellerIdkeyvalue为代表110小时的TimeInfo对象。          //withOutput

       //如果输入数据经过Map计算后为期望的结果,那么测试通过。

       Text mapInputValue = new Text("……");

        mapDriver.withMapper(mapper)

              .withInput(null, mapInputValue)

              .withOutput(new Text(sellerId), new TimeInfo(1, 10))

              .runTest();

    }

ReduceDriver

         针对Reduce的单独测试,还是这个例子。Reduce为根据MapCombiner输出的n次时间间隔的总和来计算平均时间。

    private Reduce reducer;

    @Before

    public void setUp() {

        reducer = new Reduce();

        reduceDriver = new ReduceDriver<Text, TimeInfo, Text,                                           LongWritable>(reducer);

    }

 

    @Test

    public void testReduce () {

        List<TimeInfo> values = new ArrayList<TimeInfo>();

        values.add(new TimeInfo(1, 3));//一次3小时

        values.add(new TimeInfo(2, 5));//两次总共5小时

        values.add(new TimeInfo(3, 7));//三次总共7小时

       //values作为444这个卖家的reduce输入,

       //期望计算出平均为2小时

        reduceDriver.withReducer(reducer)

                  .withInput(new Text("444"), values)

                  .withOutput(new Text("444"),new  LongWritable(2))

                  .runTest();

    }

MapReduceDriver

    以下为MapReduce联合测试的例子,

    private MapReduceDriver<LongWritable, Text, Text, TimeInfo, Text, LongWritable> mrDriver;

    private Map mapper;

    private Reduce reducer;

    @Before

    public void setUp() {

        mapper = new Map();

        reducer = new Reduce();

        mrDriver = new MapReduceDriver<LongWritable, Text, Text, TimeInfo,                    Text, LongWritable>(mapper, reducer);

    }

 

    @Test

    public void testMapReduce_3record_1user() {

       Text mapInputValue1 = new Text("……");

       Text mapInputValue2 = new Text("……");

       Text mapInputValue3 = new Text("……");

       //我们期望从以上三条Map输入计算后,

       //reduce输出得到444这个卖家的平均时间为2小时.

        mrDriver.withInput(null, mapInputValue1)

           .withInput(null, mapInputValue2)

           .withInput(null, mapInputValue3)

           .withOutput(new Text("444"),new LongWritable(2))

           .runTest();

    }

 

字数超出了,下一篇继续介绍增强MRUnit使他支持MultipleOutputs、从文件加载数据集和自动装配等几个特性http://jen.iteye.com/blog/1003868

同步定位与地图构建(SLAM)技术为移动机器人或自主载具在未知空间中的导航提供了核心支撑。借助该技术,机器人能够在探索过程中实时构建环境地图并确定自身位置。典型的SLAM流程涵盖传感器数据采集、数据处理、状态估计及地图生成等环节,其核心挑战在于有效处理定位与环境建模中的各类不确定性。 Matlab作为工程计算与数据可视化领域广泛应用的数学软件,具备丰富的内置函数与专用工具箱,尤其适用于算法开发与仿真验证。在SLAM研究方面,Matlab可用于模拟传感器输出、实现定位建图算法,并进行系统性能评估。其仿真环境能显著降低实验成本,加速算法开发与验证周期。 本次“SLAM-基于Matlab的同步定位与建图仿真实践项目”通过Matlab平台完整再现了SLAM的关键流程,包括数据采集、滤波估计、特征提取、数据关联与地图更新等核心模块。该项目不仅呈现了SLAM技术的实际应用场景,更为机器人导航与自主移动领域的研究人员提供了系统的实践参考。 项目涉及的核心技术要点主要包括:传感器模型(如激光雷达与视觉传感器)的建立与应用、特征匹配与数据关联方法、滤波器设计(如扩展卡尔曼滤波与粒子滤波)、图优化框架(如GTSAM与Ceres Solver)以及路径规划与避障策略。通过项目实践,参与者可深入掌握SLAM算法的实现原理,并提升相关算法的设计与调试能力。 该项目同时注重理论向工程实践的转化,为机器人技术领域的学习者提供了宝贵的实操经验。Matlab仿真环境将复杂的技术问题可视化与可操作化,显著降低了学习门槛,提升了学习效率与质量。 实践过程中,学习者将直面SLAM技术在实际应用中遇到的典型问题,包括传感器误差补偿、动态环境下的建图定位挑战以及计算资源优化等。这些问题的解决对推动SLAM技术的产业化应用具有重要价值。 SLAM技术在工业自动化、服务机器人、自动驾驶及无人机等领域的应用前景广阔。掌握该项技术不仅有助于提升个人专业能力,也为相关行业的技术发展提供了重要支撑。随着技术进步与应用场景的持续拓展,SLAM技术的重要性将日益凸显。 本实践项目作为综合性学习资源,为机器人技术领域的专业人员提供了深入研习SLAM技术的实践平台。通过Matlab这一高效工具,参与者能够直观理解SLAM的实现过程,掌握关键算法,并将理论知识系统应用于实际工程问题的解决之中。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值