/* THE PROGRAM IS MADE BY PYY */
/*----------------------------------------------------------------------------//
Copyright (c) 2012 panyanyany All rights reserved.
URL : http://ac.jobdu.com/problem.php?pid=1131
Name : 题目1131:合唱队形
Date : Sunday, July 8, 2012
Time Stage : 3 hours
Result:
277086 panyanyany
1131
Accepted 1516 kb 840 ms C++ / Edit
11:06:23
Test Data :
Review :
呜呜呜呜呜~~又做了三四个小时。改来改去都不成功啊。刚想的时候以为可以打乱次序来排,
结果一对比数据发现是不行的。于是果断思考DP的思路。后来用了一种很麻烦的方法,又过不了。
于是果断找题解。其实看题解的话真是好简单的样子。个人感觉小媛姐的比较清晰点。这题说白了
就是以某个人为最高点,进行向左向右的两次 “最长降序子序列算法”。
-----欢迎进入传送门-------
http://blog.youkuaiyun.com/zxy_snow/article/details/6064297
http://xieyan87.com/?p=195
我写了一个函数:
int LDesS(int dp[], int a[], int n, int dir = RIGHT);
主要是求最长下降子序列的,不过可以设定方向(dir)。如果dir == RIGHT,就表示向右递减,也就是正常的
dp,dir == LEFT 表示向左递减,就是反方向的dp了。这个函数还真是有点纠结……最后,因为求LDS的时候同一个位置的元素被加了两次,所以答案要减1.
//----------------------------------------------------------------------------*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <vector>
#include <algorithm>
#include <iostream>
#include <queue>
#include <set>
#include <string>
using namespace std ;
#define MEM(a, v) memset (a, v, sizeof (a)) // a for address, v for value
#define max(x, y) ((x) > (y) ? (x) : (y))
#define min(x, y) ((x) < (y) ? (x) : (y))
#define INF (0x3f3f3f3f)
#define MAXN 309
#define L(x) ((x)<<1)
#define R(x) (((x)<<1)|1)
#define M(x, y) (((x)+(y)) >> 1)
#define DB //
int DesLeft[MAXN], DesRight[MAXN], a[MAXN], cnt[MAXN];
enum { LEFT, RIGHT };
int LDesS(int dp[], int a[], int n, int dir = RIGHT)
{
int i, j, k, beg, end, step;
if (RIGHT == dir)
{
beg = 0;
end = n;
step = 1;
}
else
{
beg = n - 1;
end = -1;
step = -1;
}
for (i = beg; i != end; i += step)
{
dp[i] = 1;
for (j = beg; j != i; j += step)
{
if (a[i] > a[j])
dp[i] = max(dp[i], dp[j] + 1);
}
}
// printf ("LDecs: pos:%d, dir:%d, return:%d\n", pos, dir, dp[pos]);
return dir;
}
int DblDirectSeq(int a[], int n)
{
int i, k;
LDesS(DesRight, a, n, RIGHT);
LDesS(DesLeft, a, n, LEFT);
k = 0;
for (i = 0; i < n; ++i)
DesRight[i] += DesLeft[i] - 1;
for (i = 0; i < n; ++i)
k = max(k, DesRight[i]);
return n - k;
}
int main()
{
int i, n;
while (scanf("%d", &n) != EOF)
{
for(i = 0; i < n; ++i)
scanf("%d", a+i);
printf("%d\n", DblDirectSeq(a, n));
}
return 0;
}