#include <stdio.h>
#include <string.h>
#define DEBUG
#ifdef DEBUG
#define debug(...) printf( __VA_ARGS__)
#else
#define debug(...)
#endif
#define N 20010
#define M 1800000
#define MAX_INT 0x3fffffff
#define min(a, b) (a) < (b) ? (a) : (b)
/* 图的邻接表+静态链表表示法 */
struct Edge{
int u, v, weight;
int next;
};
struct Edge edge[M];
int head[N]; /* head[u]表示顶点u第一条邻接边的序号, 若head[u] = -1, u没有邻接边 */
int n;
int current; /* 当前有多少条边 */
void add_edge(int u, int v, int weight)
{
/*
int i;
//检查u->v是否存在
for (i = head[u]; edge[i].v != v && i != -1; i = edge[i].next);
if (i != -1) {
edge[i].weight = weight;
return;
}*/
/* 添加正向边u->v */
edge[current].u = u;
edge[current].v = v;
edge[current].weight = weight;
edge[current].next = head[u];
head[u] = current++;
/* 添加反向边v->u */
edge[current].u = v;
edge[current].v = u;
edge[current].weight = 0;
edge[current].next = head[v];
head[v] = current++;
}
int isap(int s, int e)
{
int i, u, v, max_flow, aug, min_lev;
/* 寻找增广路径的过程中, curedge[u]保存的是对于顶点u当前遍历的边, 寻找顶点u的邻接边时不用每次
* 都从head[u]开始找, 而是从curedge[u]开始找, 这样就减少了搜索次数
* 当增广路径找到后
* curedge保存的就是一条增广路径了, 比如
* 0---四-->1---六-->2--七--->3---八--->4 0,1,2,3,4是顶点号, 四六七八是边的序号
* curedge[0] = 四, curedge[1] = 六, ... curedge[3] = 8, curedge[i]即保存找过的轨迹
*/
int curedge[N], parent[N], level[N];
/* count[l]表示对于属于层次l的顶点个数, 如果某个层次没有顶点了,
* 就出现断层, 意味着没有增广路径了, 这就是gap优化, 可以提前结束寻找过程
* augment[v]表示从源点到顶点v中允许的最大流量, 即这条路线的最小权重
*/
int count[N], augment[N];
memset(level, 0, sizeof(level));
memset(count, 0, sizeof(count));
//初始时每个顶点都从第一条边开始找
for (i = 0; i <= n; i++) {
curedge[i] = head[i];
}
max_flow = 0;
augment[s] = MAX_INT;
parent[s] = -1;
u = s;
while (level[s] < n) { /* 不能写成level[s] < MAX_INT */
if (u == e) { /* 找到一条增广路径 */
max_flow += augment[e];
aug = augment[e];
debug("找到一条增广路径, augment = %d\n", aug);
debug("%d", e);
for (v = parent[e]; v != -1; v = parent[v]) { /* 从后往前遍历路径 */
i = curedge[v];
debug("<--%d", v);
edge[i].weight -= aug;
edge[i^1].weight += aug; /* 如果i是偶数, i^1 = i+1, 如果i是奇数, i^1 = i-1 */
augment[edge[i].v] -= aug;
if (edge[i].weight == 0) u = v; /* u指向增广后最后可达的顶点, 下次就从它继续找 */
}
debug("\n");
}
/* 从顶点u往下找邻接点 */
for (i = curedge[u]; i != -1; i = edge[i].next) { /* 从curedge[u]开始找, 而不是head[u]从头开始, curedge[u]保存的是上次找过的边 */
v = edge[i].v;
if (edge[i].weight > 0 && level[u] == (level[v]+1)) { /* 找到一条边就停止 */
augment[v] = min(augment[u], edge[i].weight);
curedge[u] = i;
parent[v] = u;
u = v;
break;
}
}
if (i == -1) { /* 没有邻接点, 回溯到上一个点 */
if (--count[level[u]] == 0) {
debug("顶点%d在level %d断层\n", u, level[u]);
break;
}
curedge[u] = head[u]; /* 顶点u的所有边都试过了,没有出路, 更新了u的level后, 又从第一条边开始找 */
//找出level最小的邻接点
min_lev = n;
for (i = head[u]; i != -1; i = edge[i].next) {
if (edge[i].weight > 0) {
min_lev = min(level[edge[i].v], min_lev);
}
}
level[u] = min_lev + 1;
count[level[u]]++;
debug("顶点%d的level= %d\n", u, level[u]);
debug("顶点%d走不通, 回到%d\n", u, edge[curedge[u]].u);
if (u != s ) u = parent[u]; /* 回退到上一个顶点 */
}
}
return max_flow;
}
int main()
{
int m, u, v, w, a, b;
while (scanf("%d %d", &n, &m) != EOF) {
memset(edge, 0, sizeof(edge));
memset(head, -1, sizeof(head));
current = 0;
for (u = 1; u <= n; u++) {
scanf("%d %d", &a, &b);
add_edge(0, u, a);
add_edge(u, n+1, b);
}
while (m--) {
scanf("%d %d %d", &u, &v, &w);
/* 如果调用函数添加边, 速度明显边慢 */
//add_edge(u, v, w);
//add_edge(v, u, w);
/* 添加正向边u->v */
edge[current].u = u;
edge[current].v = v;
edge[current].weight = w;
edge[current].next = head[u];
head[u] = current++;
/* 添加反向边v->u */
edge[current].u = v;
edge[current].v = u;
edge[current].weight = w;
edge[current].next = head[v];
head[v] = current++;
}
n += 2;
printf("%d\n", isap(0, n-1));
}
return 0;
}