使用liferay开发小记

本文介绍了如何针对Liferay 4.3.31版本进行定制化开发,包括修改portlet外观、调整页面类型、隐藏特定链接、屏蔽功能设置等操作步骤。还介绍了如何实现权限控制、数据库实时更新以及界面元素调整等内容。
使用liferay开发系统时涉及到的对liferay的一些修改信息:

liferay版本4.3.3

1,系统不想使用liferay默认的能自己定制portlet外观信息的选项。

则修改liferay-portal\html\themes\_unstyled\templates下的portlet.vm,并且在

相应的各个风格下面也修改该文件,去掉文件中的$theme.iconPortletCss()。

则在每个portlet上不再有外观样式设置的选项。

2,在对个人或者对社区的页面进行设置时,会发现页面类型。该页面类型由portal.properties属性文件的layout.types属性设定。

3,想去掉我的帐户链接,则可以

修改\html\themes\_unstyled\templates\init.vm文件,去掉我的帐户相关内容。

4,页面设置中很多功能需要屏蔽掉,修改

/portlet/communities/edit_pages.jsp文件即可。

5,如果想用外观样式功能,但想修改配置界面的内容,则可以按自己需要修改

\html\portlet\portlet_css\view.jsp该页面。

6,风格只保留一个.不要其他风格。

修改配置文件liferay-look-and-feel.xml

7,去掉公开页。保留我的公共(页面),

修改页面:/html/taglib/ui/my_places/page.jsp,去掉公开页。去掉页面设置中的公开页设置。

8,在为liferay系统添加内容时,想要字体更大,添加内容的页面出现在页面中间。

则修改js文件,js/liferay/layout_configuration.js,修改toggle方法,width:400,noCeneter:false;这样可以使添加内容的页面显示在整个页面中间。

修改\html\portlet\layout_configuration中的view_category.jsp页面,则可以修改添加内容页面的显示内容和样式。

9,权限达到可看不可用的效果。

设置一些portlet的权限,使某些用户能看而不能添加。修改html\portlet\layout_configuration\view_category.jsp页面。

取得所有的portlet ,而不是用户有权限添加的portlet.

在展示用户添加portlet时,设置不可添加的portlet添加按钮不可用。

10,liferay系统中,如果不通过liferay而修改数据库中的数据,则在liferay系统中不能看到实时更新的效果,因为liferay采用缓存机制。

需要修改持久实现类

service.persistence.××××PersistenceImpl中的对应方法,使用直接查询,而不采用读取缓存的操作,这样才能得到实时更新的数据。

去掉:


Object result = FinderCache.getResult(finderClassName,
finderMethodName, finderParams, finderArgs, getSessionFactory());
FinderCache.putResult(finderClassName, finderMethodName,
finderParams, finderArgs, list);



在对持久化对象进行更新操作时,会调用下面的代码,所以可以保持在缓存中的对象是最新的。


FinderCache.clearCache(AICustomerReports.class.getName());

[url="http://shop35486993.taobao.com/"][img]http://fly-ever.iteye.com/upload/picture/pic/28269/e1d6d17f-acf7-32b9-b489-cd751d8a1de3.jpg[/img][/url]
内容概要:本文介绍了一个基于多传感器融合的定位系统设计方案,采用GPS、里程计和电子罗盘作为定位传感器,利用扩展卡尔曼滤波(EKF)算法对多源传感器数据进行融合处理,最终输出目标的滤波后位置信息,并提供了完整的Matlab代码实现。该方法有效提升了定位精度与稳定性,尤其适用于存在单一传感器误差或信号丢失的复杂环境,如自动驾驶、移动采用GPS、里程计和电子罗盘作为定位传感器,EKF作为多传感器的融合算法,最终输出目标的滤波位置(Matlab代码实现)机器人导航等领域。文中详细阐述了各传感器的数据建模方式、状态转移与观测方程构建,以及EKF算法的具体实现步骤,具有较强的工程实践价值。; 适合人群:具备一定Matlab编程基础,熟悉传感器原理和滤波算法的高校研究生、科研人员及从事自动驾驶、机器人导航等相关领域的工程技术人员。; 使用场景及目标:①学习和掌握多传感器融合的基本理论与实现方法;②应用于移动机器人、无人车、无人机等系统的高精度定位与导航开发;③作为EKF算法在实际工程中应用的教学案例或项目参考; 阅读建议:建议读者结合Matlab代码逐行理解算法实现过程,重点关注状态预测与观测更新模块的设计逻辑,可尝试引入真实传感器数据或仿真噪声环境以验证算法鲁棒性,并进一步拓展至UKF、PF等更高级滤波算法的研究与对比。
内容概要:文章围绕智能汽车新一代传感器的发展趋势,重点阐述了BEV(鸟瞰图视角)端到端感知融合架构如何成为智能驾驶感知系统的新范式。传统后融合与前融合方案因信息丢失或算力需求过高难以满足高阶智驾需求,而基于Transformer的BEV融合方案通过统一坐标系下的多源传感器特征融合,在保证感知精度的同时兼顾算力可行性,显著提升复杂场景下的鲁棒性与系统可靠性。此外,文章指出BEV模型落地面临大算力依赖与高数据成本的挑战,提出“数据采集-模型训练-算法迭代-数据反哺”的高效数据闭环体系,通过自动化标注与长尾数据反馈实现算法持续进化,降低对人工标注的依赖,提升数据利用效率。典型企业案例进一步验证了该路径的技术可行性与经济价值。; 适合人群:从事汽车电子、智能驾驶感知算法研发的工程师,以及关注自动驾驶技术趋势的产品经理和技术管理者;具备一定自动驾驶基础知识,希望深入了解BEV架构与数据闭环机制的专业人士。; 使用场景及目标:①理解BEV+Transformer为何成为当前感知融合的主流技术路线;②掌握数据闭环在BEV模型迭代中的关键作用及其工程实现逻辑;③为智能驾驶系统架构设计、传感器选型与算法优化提供决策参考; 阅读建议:本文侧重技术趋势分析与系统级思考,建议结合实际项目背景阅读,重点关注BEV融合逻辑与数据闭环构建方法,并可延伸研究相关企业在舱泊一体等场景的应用实践。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值