Windows CE S3C2440A下按键驱动程序编码分析

本文介绍了一个基于TQ2440平台的键盘驱动程序设计,重点讲解了如何通过配置GPIO口和处理中断来实现上下左右四个按键的功能。

这些程序基于TQ2440平台,主要是实现键盘按键的运作,方便起见,只实现了上下左右四个按键。该部分硬件结构图如下;

image

从硬件图可以看出,按键连接EINT1、EINT2、EINT4和EINT0四个中断引脚。在WindowsCE中,我们只需要处理好这四个中断即可,如下详细介绍;

image 从这幅图中可以看出,EINT0~4的是由GPF0~4控制的,因此在驱动之前需要先配置这四个GPIO口,使其下降延触发,如下代码;

v_pIOPregs->GPFCON &= ~(0x3 << 0); /* Set EINT0(GPF0) as EINT0 */
v_pIOPregs->GPFCON |= (0x2 << 0);

v_pIOPregs->EXTINT0 &= ~(0x7 << 0); /* Configure EINT0 as Falling Edge Mode */
v_pIOPregs->EXTINT0 |= (0x2 << 0);

v_pIOPregs->GPFCON &= ~(0x3 << 2); /* Set EINT1(GPF0) as EINT1 */
v_pIOPregs->GPFCON |= (0x2 << 2);

v_pIOPregs->EXTINT0 &= ~(0x7 << 4); /* Configure EINT1 as Falling Edge Mode */
v_pIOPregs->EXTINT0 |= (0x2 << 4);

v_pIOPregs->GPFCON &= ~(0x3 << 4); /* Set EINT2(GPF2) as EINT */
v_pIOPregs->GPFCON |= (0x2 << 4);

v_pIOPregs->EXTINT0 &= ~(0x7 << 8); /* Configure EINT2 as Falling Edge Mode */
v_pIOPregs->EXTINT0 |= (0x2 << 8);

v_pIOPregs->GPFCON &= ~(0x3 << 8); /* Set EINT0(GPF4) as EINT4 */
v_pIOPregs->GPFCON |= (0x2 << 8);

v_pIOPregs->EXTINT0 &= ~(0x7 << 16); /* Configure EINT4 as Falling Edge Mod */
v_pIOPregs->EXTINT0 |= (0x2 << 16);

配置好之后,进行中断处理线程,如下代码;

IntEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
if (!IntEvent)
{
RETAILMSG(1, (TEXT("ERROR: kEYBD: Failed to create event./r/n")));
return FALSE;
}

IRQ = 1; //IRQ_EINT1;
if (!KernelIoControl(IOCTL_HAL_REQUEST_SYSINTR, &IRQ, sizeof(UINT32), &g_KeySysIntr[0], sizeof(UINT32), NULL))
{
RETAILMSG(1, (TEXT("ERROR: kEYBD: Failed to request sysintr value./r/n")));
return FALSE;
}

IRQ = 32; //IRQ_EINT4;
if (!KernelIoControl(IOCTL_HAL_REQUEST_SYSINTR, &IRQ, sizeof(UINT32), &g_KeySysIntr[1], sizeof(UINT32), NULL))
{
RETAILMSG(1, (TEXT("ERROR: kEYBD: Failed to request sysintr value./r/n")));
return FALSE;
}

IRQ = 2; //IRQ_EINT2;
if (!KernelIoControl(IOCTL_HAL_REQUEST_SYSINTR, &IRQ, sizeof(UINT32), &g_KeySysIntr[2], sizeof(UINT32), NULL))
{
RETAILMSG(1, (TEXT("ERROR: kEYBD: Failed to request sysintr value./r/n")));
return FALSE;
}

IRQ = 0; //IRQ_EINT0;
if (!KernelIoControl(IOCTL_HAL_REQUEST_SYSINTR, &IRQ, sizeof(UINT32), &g_KeySysIntr[3], sizeof(UINT32), NULL))
{
RETAILMSG(1, (TEXT("ERROR: kEYBD: Failed to request sysintr value./r/n")));
return FALSE;
}

if (!InterruptInitialize(g_KeySysIntr[0], IntEvent, NULL, 0))
{
RETAILMSG(1,(TEXT("Fail to initialize userkey interrupt event/r/n")));
return FALSE;
}
if (!InterruptInitialize(g_KeySysIntr[1], IntEvent, NULL, 0))
{
RETAILMSG(1,(TEXT("Fail to initialize userkey interrupt event/r/n")));
return FALSE;
}
if (!InterruptInitialize(g_KeySysIntr[2], IntEvent, NULL, 0))
{
RETAILMSG(1,(TEXT("Fail to initialize userkey interrupt event/r/n")));
return FALSE;
}
if (!InterruptInitialize(g_KeySysIntr[3], IntEvent, NULL, 0))
{
RETAILMSG(1,(TEXT("Fail to initialize userkey interrupt event/r/n")));
return FALSE;
}

while(1)
{
WaitForSingleObject(IntEvent, INFINITE);
RETAILMSG(0,(L"INTMASK=%X, EINTMASK=%X, GPGCON=%X/r/n", v_pINTRregs->INTMSK, v_pIOPregs->EINTMASK, v_pIOPregs->GPFCON));

//EINT1 - K1 - VK_UP - 0x26
if(v_pINTRregs->INTMSK & (1< {
RETAILMSG(1,(TEXT("[Key1 - UP]/r/n")));
keybd_event(VK_UP ,0x26, 0, 0);
Sleep(30);
keybd_event(VK_UP ,0x26, KEYEVENTF_KEYUP, 0);
InterruptDone(g_KeySysIntr[0]);
}

//EINT4 - K2 - VK_DOWN - 0x28
if(v_pIOPregs->EINTMASK & (1< {
RETAILMSG(1,(TEXT("[Key2 - DOWN]/r/n")));
keybd_event(VK_DOWN ,0x28, 0, 0);
Sleep(30);
keybd_event(VK_DOWN ,0x28, KEYEVENTF_KEYUP, 0);
InterruptDone(g_KeySysIntr[1]);
}

//EINT2 - K3 - VK_LEFT - 0x25
if(v_pINTRregs->INTMSK & (1< {
RETAILMSG(1,(TEXT("[K3 - LEFT]/r/n")));
keybd_event(VK_LEFT ,0x25, 0, 0);
Sleep(30);
keybd_event(VK_LEFT ,0x25, KEYEVENTF_KEYUP, 0);
InterruptDone(g_KeySysIntr[2]);
}
//EINT0 - K4 - VK_RIGHT - 0x27
if(v_pINTRregs->INTMSK & (1< {
RETAILMSG(1,(TEXT("[K4 - RIGHT]/r/n")));
keybd_event(VK_RIGHT ,0x27, 0, 0);
Sleep(30);
keybd_event(VK_RIGHT ,0x27, KEYEVENTF_KEYUP, 0);
InterruptDone(g_KeySysIntr[3]);
}
}

跟网型逆变器小干扰稳定性分析与控制策略优化研究(Simulink仿真实现)内容概要:本文围绕跟网型逆变器的小干扰稳定性展开分析,重点研究其在电力系统中的动态响应特性及控制策略优化问题。通过构建基于Simulink的仿真模型,对逆变器在不同工况下的小信号稳定性进行建模与分析,识别系统可能存在的振荡风险,并提出相应的控制优化方法以提升系统稳定性和动态性能。研究内容涵盖数学建模、稳定性判据分析、控制器设计与参数优化,并结合仿真验证所提策略的有效性,为新能源并网系统的稳定运行提供理论支持和技术参考。; 适合人群:具备电力电子、自动控制或电力系统相关背景,熟悉Matlab/Simulink仿真工具,从事新能源并网、微电网或电力系统稳定性研究的研究生、科研人员及工程技术人员。; 使用场景及目标:① 分析跟网型逆变器在弱电网条件下的小干扰稳定性问题;② 设计并优化逆变器外环与内环控制器以提升系统阻尼特性;③ 利用Simulink搭建仿真模型验证理论分析与控制策略的有效性;④ 支持科研论文撰写、课题研究或工程项目中的稳定性评估与改进。; 阅读建议:建议读者结合文中提供的Simulink仿真模型,深入理解状态空间建模、特征值分析及控制器设计过程,重点关注控制参数变化对系统极点分布的影响,并通过动手仿真加深对小干扰稳定性机理的认识。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值