Power Management interface for Solaris device driver

本文介绍了Solaris操作系统中电源管理的相关接口和技术,包括Suspend和Resume功能、DDI_SUSPEND及DDI_RESUME标志的使用方法,以及如何通过power入口点进行组件功率状态的管理。

Please refer to http://blogs.sun.com/randyf/entry/more_power_to_you for original post.

More Power to You

Typically, I wonder if my posts are more small snippits of tidbits (ahhh, Kibbles and Bits!!!!), but here is a bit more.

The Solaris operating environment supports various aspects of power management, including Suspend and Resumve (a.k.a. CheckPoint and Resume, or CPR), and soon, so will Solaris on x86 (much of which will go through the ACPI interfaces). It is, therefore, important that your drivers support the Solaris power management interfaces:

  • DDI_SUSPEND (a flag passed to detatch(9e))
  • DDI_RESUME (a flag passed to attach(9e))
  • power(9e) (a driver entry point)

Much on these interfaces can be found at http://docs.sun.com , or on the relevant man pages for the attach(9e) , detatch(9e) , and power(9d) man pages.

But in a nutshell, DDI_SUSPEND and DDI_RESUME cases should handle the saving and restoring of hardware state before a device is shutdown or restored after a shutdown. And power(9e) is the procedure that Power Management framework functions will call when it wants to manage components that provide power management facilities in the hardware.

the power(9e) entry point also works in conjunction with:

  • pm_lower_power(9f) - Lower power on a component
  • pm_raise_power(9f) - Raise power on a component
  • pm_busy_component(9f) - Indicate that the component is busy
  • pm_idle_component(9f) - Indicate that the component is idle
  • pm_create_components(9f) - Create manageble components
  • pm_destroy_components(9f) - Destroy manageble components

So are you writing a driver, and expect it to work with Solaris Power Management. Well, the first and most important part of this equasion is that you MUST implement the DDI_SUSPEND and DDI_RESUME commands to the attach and detach routines in your driver. And in this section of the code, it is important to take information from the hardware, and save it into kernel memory (maybe a pointer within the driver soft state). On resume, all that is necessary, is to take this saved state, and put it back in the hardware:

xxx_detach() [
switch (cmd) {
case DDI_SUSPEND:
/* Save hardware state */
if (OK)
return (DDI_SUCCESS);
else
return (DDI_FAILURE);
break;
case DDI_DETACH:
/* Do attach processing */
if (OK)
return (DDI_SUCCESS);
else
return (DDI_FAILURE);
break;
default:
/* Shouldn't be here */
return (DDI_VAILURE);
}
xxxattach() {
case DDI_RESUME:
/* Restore hardware state */
/* See the return related information in detach */
break;
case DDI_DETACH:
/* Do attach processing */
default:
/* Shouldn't be here */
return (DDI_FAILURE);
}

Of course, the relevent hardware information needed to save and/or restore the driver after a suspend/resume needs to be put inside the DDI_SUSPEND/DDI_RESUME case, and cannot really be presented here. However, if a the driver is written well, it can very well have a drv_suspend() function, (or even a save_state or restore_state function), and the attach/detach routines become very easy to manage.

And should your driver be able to handle various power states, say a laptop framebuffer that allows for the backligh to be at lower intensity, or a disk driver that allows for the drive to spin down, then you must also implement the power(9e) entry point and many of the pm_* routines above (gotta register the components, and let the Solaris power management framework know when they are idle).

But alas, this may be a lot of thinking for a day, so maybe it is time for a California Pale Ale!
OK, there really isn't a category for a California Pale Ale, but one of the classic Pale Ales from California, is the Sierra Nevada Pale Ale . Light and crisp, with a hit of hop fruitiness. A great ale for a fine fall day.

And sometime later, I will add some more details to Power Mangement
Do you have some questions or suggestions, just add a comment, I will happily elaborate more!

基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的Koopman算子的递归神经网络模型线性化”展开,旨在研究纳米定位系统的预测控制方法。通过结合数据驱动技术与Koopman算子理论,将非线性系统动态近似为高维线性系统,进而利用递归神经网络(RNN)建模并实现系统行为的精确预测。文中详细阐述了模型构建流程、线性化策略及在预测控制中的集成应用,并提供了完整的Matlab代码实现,便于科研人员复现实验、优化算法并拓展至其他精密控制系统。该方法有效提升了纳米级定位系统的控制精度与动态响应性能。; 适合人群:具备自动控制、机器学习或信号处理背景,熟悉Matlab编程,从事精密仪器控制、智能制造或先进控制算法研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①实现非线性动态系统的数据驱动线性化建模;②提升纳米定位平台的轨迹跟踪与预测控制性能;③为高精度控制系统提供可复现的Koopman-RNN融合解决方案; 阅读建议:建议结合Matlab代码逐段理解算法实现细节,重点关注Koopman观测矩阵构造、RNN训练流程与模型预测控制器(MPC)的集成方式,鼓励在实际硬件平台上验证并调整参数以适应具体应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值