3 Big Factors to consider choosing between RFT & UFT

本文探讨了Rational Functional Tester (RFT) 和 Unified Functional Testing (UFT) 在开源工具集成、持续集成模型下的便利性及Linux环境下的适用性等关键因素。通过对比分析,为读者提供了选择合适自动化测试工具的参考。

Factor 1-

  • IBM RFT can be extended to use the open source tools in case of the limitations in RFT. Few open source tools to name – Selenium, FlexMonkium.
  • While UFT provides no such option to use it in combination with other open source tools using direct mechanism.

Hence in a situation where a client is using “Selenium” for his testing, a way could be found( no direct mechanism yet ) to migrate his existing automation suite / plug in RFT in his existing Test Suite which provides the room for further integration of Rational Products i.e.

Test Management – IBM Test Manager

 

Factor 2-

In a Continuous Integration (CI) Model Integration of HP Automation Tool is conveniently achieved through ALM (HP) & also through open source integration with Jenkins

  • Though RFT has its Test Manager (IBM) in a CI Model it fails to impress since there is no direct Integration with Jenkins – rather achieved through a plain .bat file.

Jenkins provides an easy-to-use so-called continuous integration system, making it easier for developers to integrate changes to the project, and making it easier for users to obtain a fresh build. The automated, continuous build increases the productivity. – Source Jenkins Wiki

 

Factor 3-

If the target system is LINUX then there is very little which can be achieved with UFT.

RFT – Supports Test Execution in Linux Environment with Firefox Browser

UFT – Runs Test only in Windows Family

 

http://studyautomation.com/3-big-factors-consider-choosing-rft-uft/

基于遗传算法的微电网调度(风、光、蓄电池、微型燃气轮机)(Matlab代码实现)内容概要:本文档介绍了基于遗传算法的微电网调度模型,涵盖风能、太阳能、蓄电池和微型燃气轮机等多种能源形式,并通过Matlab代码实现系统优化调度。该模型旨在解决微电网中多能源协调运行的问题,优化能源分配,降低运行成本,提高可再生能源利用率,同时考虑系统稳定性与经济性。文中详细阐述了遗传算法在求解微电网多目标优化问题中的应用,包括编码方式、适应度函数设计、约束处理及算法流程,并提供了完整的仿真代码供复现与学习。此外,文档还列举了大量相关电力系统优化案例,如负荷预测、储能配置、潮流计算等,展示了广泛的应用背景和技术支撑。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事微电网、智能电网优化研究的工程技术人员。; 使用场景及目标:①学习遗传算法在微电网调度中的具体实现方法;②掌握多能源系统建模与优化调度的技术路线;③为科研项目、毕业设计或实际工程提供可复用的代码框架与算法参考; 阅读建议:建议结合Matlab代码逐段理解算法实现细节,重点关注目标函数构建与约束条件处理,同时可参考文档中提供的其他优化案例进行拓展学习,以提升综合应用能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值