k-均值算法的java实现

本文介绍了一种K均值聚类算法的具体实现过程,包括读取数据文件、初始化数据、计算样本间的欧式距离、更新中心点等关键步骤,并展示了最终的聚类结果。

import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;

public class KAverage {
private int sampleCount = 0;
private int dimensionCount = 0;
private int centerCount = 0;
private double[][] sampleValues;
private double[][] centers;
private double[][] tmpCenters;
private String dataFile = "";

/**
* 通过构造器传人数据文件
*/
public KAverage(String dataFile) throws NumberInvalieException {
this.dataFile = dataFile;
}

/**
* 第一行为s;d;c含义分别为样例的数目,每个样例特征的维数,聚类中心个数 文件格式为d[,d]...;d[,d]... 如:1,2;2,3;1,5
* 每一维之间用,隔开,每个样例间用;隔开。结尾没有';' 可以有多行
*/

private int initData(String fileName) {
String line;
String samplesValue[];
String dimensionsValue[] = new String[dimensionCount];
BufferedReader in;
try {
in = new BufferedReader(new FileReader(fileName));
} catch (FileNotFoundException e) {
e.printStackTrace();
return -1;
}
/*
* 预处理样本,允许后面几维为0时,不写入文件
*/
for (int i = 0; i < sampleCount; i++) {
for (int j = 0; j < dimensionCount; j++) {
sampleValues[i][j] = 0;
}
}

int i = 0;
double tmpValue = 0.0;
try {
line = in.readLine();
String params[] = line.split(";");
if (params.length != 3) {// 必须为3个参数,否则错误
return -1;
}
/**
* 获取参数
*/
this.sampleCount = Integer.parseInt(params[0]);
this.dimensionCount = Integer.parseInt(params[1]);
this.centerCount = Integer.parseInt(params[2]);
if (sampleCount <= 0 || dimensionCount <= 0 || centerCount <= 0) {
throw new NumberInvalieException("input number <= 0.");
}
if (sampleCount < centerCount) {
throw new NumberInvalieException(
"sample number < center number");
}

sampleValues = new double[sampleCount][dimensionCount + 1];
centers = new double[centerCount][dimensionCount];
tmpCenters = new double[centerCount][dimensionCount];

while ((line = in.readLine()) != null) {
samplesValue = line.split(";");
for (int j = 0; j < samplesValue.length; j++) {
dimensionsValue = samplesValue[j].split(",");
for (int k = 0; k < dimensionsValue.length; k++) {
tmpValue = Double.parseDouble(dimensionsValue[k]);
sampleValues[i][k] = tmpValue;
}
i++;
}
}

} catch (IOException e) {
e.printStackTrace();
return -2;
} catch (Exception e) {
e.printStackTrace();
return -3;
}
return 1;
}

/**
* 返回样本中第s1个和第s2个间的欧式距离
*/
private double getDistance(int s1, int s2) throws NumberInvalieException {
double distance = 0.0;
if (s1 < 0 || s1 >= sampleCount || s2 < 0 || s2 >= sampleCount) {
throw new NumberInvalieException("number out of bound.");
}
for (int i = 0; i < dimensionCount; i++) {
distance += (sampleValues[s1][i] - sampleValues[s2][i])
* (sampleValues[s1][i] - sampleValues[s2][i]);
}

return distance;
}

/**
* 返回给定两个向量间的欧式距离
*/
private double getDistance(double s1[], double s2[]) {
double distance = 0.0;
for (int i = 0; i < dimensionCount; i++) {
distance += (s1[i] - s2[i]) * (s1[i] - s2[i]);
}
return distance;
}

/**
* 更新样本中第s个样本的最近中心
*/
private int getNearestCenter(int s) {
int center = 0;
double minDistance = Double.MAX_VALUE;
double distance = 0.0;
for (int i = 0; i < centerCount; i++) {
distance = getDistance(sampleValues[s], centers[i]);
if (distance < minDistance) {
minDistance = distance;
center = i;
}
}
sampleValues[s][dimensionCount] = center;
return center;
}

/**
* 更新所有中心
*/
private void updateCenters() {
double center[] = new double[dimensionCount];
for (int i = 0; i < dimensionCount; i++) {
center[i] = 0;
}
int count = 0;
for (int i = 0; i < centerCount; i++) {
count = 0;
for (int j = 0; j < sampleCount; j++) {
if (sampleValues[j][dimensionCount] == i) {
count++;
for (int k = 0; k < dimensionCount; k++) {
center[k] += sampleValues[j][k];
}
}
}
for (int j = 0; j < dimensionCount; j++) {
centers[i][j] = center[j] / count;
}
}
}

/**
* 判断算法是否终止
*/
private boolean toBeContinued() {
for (int i = 0; i < centerCount; i++) {
for (int j = 0; j < dimensionCount; j++) {
if (tmpCenters[i][j] != centers[i][j]) {
return true;
}
}
}
return false;
}

/**
* 关键方法,调用其他方法,处理数据
*/
public void doCaculate() {
initData(dataFile);

for (int i = 0; i < centerCount; i++) {
for (int j = 0; j < dimensionCount; j++) {
centers[i][j] = sampleValues[i][j];
}
}
for (int i = 0; i < centerCount; i++) {
for (int j = 0; j < dimensionCount; j++) {
tmpCenters[i][j] = 0;
}
}

while (toBeContinued()) {
for (int i = 0; i < sampleCount; i++) {
getNearestCenter(i);
}
for (int i = 0; i < centerCount; i++) {
for (int j = 0; j < dimensionCount; j++) {
tmpCenters[i][j] = centers[i][j];
}
}
updateCenters();
System.out
.println("******************************************************");
showResultData();
}
}

/*
* 显示数据
*/
private void showSampleData() {
for (int i = 0; i < sampleCount; i++) {
for (int j = 0; j < dimensionCount; j++) {
if (j == 0) {
System.out.print(sampleValues[i][j]);
} else {
System.out.print("," + sampleValues[i][j]);
}
}
System.out.println();
}
}

/*
* 分组显示结果
*/
private void showResultData() {
for (int i = 0; i < centerCount; i++) {
System.out.println("第" + (i + 1) + "个分组内容为:");
for (int j = 0; j < sampleCount; j++) {
if (sampleValues[j][dimensionCount] == i) {
for (int k = 0; k <= dimensionCount; k++) {
if (k == 0) {
System.out.print(sampleValues[j][k]);
} else {
System.out.print("," + sampleValues[j][k]);
}
}
System.out.println();
}
}
}
}

public static void main(String[] args) {
/*
*也可以通过命令行得到参数
*/
String fileName = "D:\\eclipsejava\\K-Average\\src\\sample.txt";
if(args.length > 0){
fileName = args[0];
}

try {
KAverage ka = new KAverage(fileName);
ka.doCaculate();
System.out
.println("***************************<<result>>**************************");
ka.showResultData();
} catch (Exception e) {
e.printStackTrace();
}
}
}




/*
* 根据自己的需要定义一些异常,使得系统性更强
*/
public class NumberInvalieException extends Exception {
private String cause;

public NumberInvalieException(String cause){
if(cause == null || "".equals(cause)){
this.cause = "unknow";
}else{
this.cause = cause;
}
}
@Override
public String toString() {
return "Number Invalie!Cause by " + cause;
}
}


测试数据
20;2;4
0,0;1,0;0,1;1,1;2,1;1,2;2,2;3,2;6,6;7,6
8,6;6,7;7,7;8,7;9,7;7,8;8,8;9,8;8,9;9,9
测试结果
***************************<<result>>**************************
第1个分组内容为:
0.0,0.0,0.0
1.0,0.0,0.0
0.0,1.0,0.0
1.0,1.0,0.0
2.0,1.0,0.0
1.0,2.0,0.0
2.0,2.0,0.0
3.0,2.0,0.0
第2个分组内容为:
6.0,6.0,1.0
7.0,6.0,1.0
8.0,6.0,1.0
6.0,7.0,1.0
7.0,7.0,1.0
8.0,7.0,1.0
9.0,7.0,1.0
7.0,8.0,1.0
8.0,8.0,1.0
9.0,8.0,1.0
8.0,9.0,1.0
9.0,9.0,1.0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值