POJ 1125 Stockbroker Grapevine

谣言快速传播算法
本文介绍了一个基于Floyd算法解决证券经理间谣言传播问题的方法。旨在找出最佳起点和最短传播时间,通过计算多源最短路径实现。面对复杂的联系网络,此算法确保了谣言能以最快的速度覆盖尽可能多的人。
Stockbroker Grapevine
Time Limit:1000MS Memory Limit:10000K
Total Submissions:23783 Accepted:13067

Description

Stockbrokers are known to overreact to rumours. You have been contracted to develop a method of spreading disinformation amongst the stockbrokers to give your employer the tactical edge in the stock market. For maximum effect, you have to spread the rumours in the fastest possible way.

Unfortunately for you, stockbrokers only trust information coming from their "Trusted sources" This means you have to take into account the structure of their contacts when starting a rumour. It takes a certain amount of time for a specific stockbroker to pass the rumour on to each of his colleagues. Your task will be to write a program that tells you which stockbroker to choose as your starting point for the rumour, as well as the time it will take for the rumour to spread throughout the stockbroker community. This duration is measured as the time needed for the last person to receive the information.

Input

Your program will input data for different sets of stockbrokers. Each set starts with a line with the number of stockbrokers. Following this is a line for each stockbroker which contains the number of people who they have contact with, who these people are, and the time taken for them to pass the message to each person. The format of each stockbroker line is as follows: The line starts with the number of contacts (n), followed by n pairs of integers, one pair for each contact. Each pair lists first a number referring to the contact (e.g. a '1' means person number one in the set), followed by the time in minutes taken to pass a message to that person. There are no special punctuation symbols or spacing rules.

Each person is numbered 1 through to the number of stockbrokers. The time taken to pass the message on will be between 1 and 10 minutes (inclusive), and the number of contacts will range between 0 and one less than the number of stockbrokers. The number of stockbrokers will range from 1 to 100. The input is terminated by a set of stockbrokers containing 0 (zero) people.

Output

For each set of data, your program must output a single line containing the person who results in the fastest message transmission, and how long before the last person will receive any given message after you give it to this person, measured in integer minutes.
It is possible that your program will receive a network of connections that excludes some persons, i.e. some people may be unreachable. If your program detects such a broken network, simply output the message "disjoint". Note that the time taken to pass the message from person A to person B is not necessarily the same as the time taken to pass it from B to A, if such transmission is possible at all.

Sample Input

3
2 2 4 3 5
2 1 2 3 6
2 1 2 2 2
5
3 4 4 2 8 5 3
1 5 8
4 1 6 4 10 2 7 5 2
0
2 2 5 1 5
0

Sample Output

3 2
3 10

题意:有1条谣言,n个证券经理,每个经理可以向其他人转播谣言,(每个经理的传播数任意)。而每个经理和其他经理传播时,需要时间(如a对b传播需要3,a对c传播需要4)。问从哪个经理作为起点,能够传播的人数最多,并且时间最短。


其实这道题比较像是多点对之间的最短路,(首先要满足传播的人数最多,其次要满足在所有最短路当中的最大值最小。。好绕口)

那我采用了Floyd来算多源最短路,之后再找到起点和最短时间

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#define maxn 105
#define INF 1000000
using namespace std;
int n,map[maxn][maxn];
void init()
{
    int i,j;
    for (i=1; i<=n; i++)
    {
        for (j=1; j<=n; j++)
            map[i][j]=INF;
        map[i][i]=0;
    }
    for (i=1; i<=n; i++)
    {
        int t,a,b;
        scanf("%d",&t);
        while(t--)
        {
            scanf("%d%d",&a,&b);
            map[i][a]=b;
        }
    }
}
void floyd()
{
    int i,j,k;
    for (k=1; k<=n; k++)
        for (i=1; i<=n; i++)
            for (j=1; j<=n; j++)
                if (map[i][k]+map[k][j]<map[i][j])
                    map[i][j]=map[i][k]+map[k][j];
    k=0;
    int m=0,z=INF;
    /*
    for (i=1; i<=n; i++){
        for (j=1; j<=n; j++)
            cout<<map[i][j]<<" ";
        cout<<endl;
    }
    */
    for(i=1; i<=n; i++)
    {
        int p=0,t=0;
        for (j=1; j<=n; j++)
            if (map[i][j]!=INF)
            {
                if (map[i][j]>t) t=map[i][j];//用t来记录以每个经纪人为起点,传播的最长时间
                p++;//p来记录每个经纪人可以传多少其他人
            }
        if (p>m)//人数是第一个条件,所以人数大,就进行交换
        {
            m=p;
            k=i;
            z=t;
        }
        else if (p==m && t<z)//如果人数相同,就比较最长时间,取较短的
        {
            m=p;
            k=i;
            z=t;

        }
    }
    cout<<k<<" "<<z<<endl;
}
int main ()
{
    while(cin>>n)
    {
        if (n==0) break;
        init();
        floyd();
    }
    return 0;
}


【四轴飞行器】非线性三自由度四轴飞行器模拟器研究(Matlab代码实现)内容概要:本文围绕非线性三自由度四轴飞行器模拟器的研究展开,重点介绍了基于Matlab的建模与仿真方法。通过对四轴飞行器的动力学特性进行分析,构建了非线性状态空间模型,并实现了姿态与位置的动态模拟。研究涵盖了飞行器运动方程的建立、控制系统设计及数值仿真验证等环节,突出非线性系统的精确建模与仿真优势,有助于深入理解飞行器在复杂工况下的行为特征。此外,文中还提到了多种配套技术如PID控制、状态估计与路径规划等,展示了Matlab在航空航天仿真中的综合应用能力。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的高校学生、科研人员及从事无人机系统开发的工程技术人员,尤其适合研究生及以上层次的研究者。; 使用场景及目标:①用于四轴飞行器控制系统的设计与验证,支持算法快速原型开发;②作为教学工具帮助理解非线性动力学系统建模与仿真过程;③支撑科研项目中对飞行器姿态控制、轨迹跟踪等问题的深入研究; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注动力学建模与控制模块的实现细节,同时可延伸学习文档中提及的PID控制、状态估计等相关技术内容,以全面提升系统仿真与分析能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值