POJ 1269 (13.08.22)

本文介绍了一种通过代数方法来确定二维平面上两线段交点的算法。该算法能够判断两条线段是否相交及交点坐标,并考虑了特殊情况如线段平行或重叠。适用于计算机图形学和几何计算等领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect.
Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000.

Input

The first line contains an integer N between 1 and 10 describing how many pairs of lines are represented. The next N lines will each contain eight integers. These integers represent the coordinates of four points on the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines represents two lines on the plane: the line through (x1,y1) and (x2,y2) and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).

Output

There should be N+2 lines of output. The first line of output should read INTERSECTING LINES OUTPUT. There will then be one line of output for each pair of planar lines represented by a line of input, describing how the lines intersect: none, line, or point. If the intersection is a point then your program should output the x and y coordinates of the point, correct to two decimal places. The final line of output should read "END OF OUTPUT".

Sample Input

5
0 0 4 4 0 4 4 0
5 0 7 6 1 0 2 3
5 0 7 6 3 -6 4 -3
2 0 2 27 1 5 18 5
0 3 4 0 1 2 2 5

Sample Output

INTERSECTING LINES OUTPUT
POINT 2.00 2.00
NONE
LINE
POINT 2.00 5.00
POINT 1.07 2.20
END OF OUTPUT


题意: 由四个点确定两条线, (x1, y1) (x2, y2) 确定一条, (x3, y3) (x4, y4) 确定另一条

然后分类讨论吧, 贴出的代码有分类的注释~


注意点:

求斜率时, 注意分母为零的情况, 即直线垂直x轴时!


AC代码:

#include<stdio.h>

int main() {
    int N;
    scanf("%d", &N);
    printf("INTERSECTING LINES OUTPUT\n");
    while(N--) {
        double x1, y1, x2, y2, x3, y3, x4, y4;
        scanf("%lf %lf %lf %lf", &x1, &y1, &x2, &y2);
        scanf("%lf %lf %lf %lf", &x3, &y3, &x4, &y4);
        double k1, k2, kt;
        double c1, c2;
        double tx, ty;

        //两直线斜率都存在(即没有直线垂直x轴)的情形
        if(x2-x1 != 0 && x4-x3 != 0) {
            k1 = (y2-y1) / (x2-x1);
            k2 = (y4-y3) / (x4-x3);
            if(x1-x3 != 0)
                kt = (y1-y3) / (x1-x3);
            else if(x1-x4 != 0) 
                kt = (y1-y4) / (x1-x4);
            else if(x2-x3 != 0)
                kt = (y2-y3) / (x2-x3);
            else
                kt = (y2-y4) / (x2-x4);
            //若两直线斜率相同, 可能平行, 可能重合
            if(k1 == k2) {
                if(kt == k1) //重合
                    printf("LINE\n");
                else //平行
                    printf("NONE\n");
                }
            //不然就是斜率不同, 要相交
            else {
                c1 = y2 - k1 * x2;
                c2 = y4 - k2 * x4;
                tx = (c2-c1) / (k1-k2);
                ty = k1 * tx + c1;
                printf("POINT %.2lf %.2lf\n", tx, ty);
            }
        }
        else {
            //两直线都垂直于x轴的情形
            if(x2-x1 == 0 && x4-x3 == 0) {
                if(x2 == x3) //重合
                    printf("LINE\n");
                else //平行
                    printf("NONE\n");
            }
            //第一条不垂直而第二条垂直于x轴的情形(必相交)
            else if(x2-x1 != 0 && x4-x3 == 0) {
                k1 = (y2-y1) / (x2-x1);
                c1 = y2 - k1 * x2;
                tx = x4;
                ty = k1 * tx + c1;
                printf("POINT %.2lf %.2lf\n", tx, ty);
            }
            //第一条垂直而第二条不垂直与x轴的情形(必相交)
            else if(x4-x3 != 0 && x2-x1 == 0) {
                k2 = (y4-y3) / (x4-x3);
                c2 = y4 - k2 * x4;
                tx = x2;
                ty = k2 * tx + c2;
                printf("POINT %.2lf %.2lf\n", tx, ty);
            }
        }
    }
    printf("END OF OUTPUT\n");
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值