Min-Max Planing Report Research

Min-max planning is a method of determining when and how much to order based on userdefined minimum and maximum inventory levels.


Reorder Qty=(Max quantity) - [(onhand qty)+(qty on order)] = 1000 - [50 + 0]

When to Order?
Typically, you should order when:On-hand quantity + supplydemand < minimum

Min-Max Planing:How Much to Order?
Order Quantity = (Max quantity) - [(onhand qty)+(qty on order)]


Restock:EnterYesorNoto indicate whether to restock. If you have set the Planning Level to
Organization, the report generates requisitions or jobs according to the item's
Make/Buy flag. If you have set the Planning Level toSubinventory, the report generates only requisitions.

如果Make or Buy= Buy,restock 会产生PR
如果Make Or Buy=Make,restock之后会产生一个WIP job

Restock改为yes之后,跑完request
select*fromPO_REQUISITIONS_INTERFACE_ALLwhereitem_id=186948
PO_REQUISITIONS_INTERFACE_ALL会看到一条记录

接着运行requisition import request.

运行完后,如果遇到错误,
SELECTe.error_message
FROMpo_requisitions_interface_all i,PO_INTERFACE_ERRORSe
WHEREi.TRANSACTION_ID=e.INTERFACE_TRANSACTION_IDANDitem_id=186948;

updatepo_requisitions_interface_allsetprocess_flag='FUTURE'whereitem_id=186948
如果没错的话,那么一个PR就产生了


Footnote:
To request the min-max planning report:
1.Navigate to the Min-Max Planning window.
2.Enter Request in the Type field.
3.EnterMin-max planning reportin the Name field.
4.Navigate to the Parameters field. The Parameters window appears.
5.Indicate whether the planning level is set for the entire organization or a specific
subinventory. At the subinventory level, the report cannot generate jobs and does
not consider WIP jobs as supply or WIP components as demand. If you select
Subinventory, enter the name of the subinventory.
If you choose subinventory, as the planning level, the report includes VMI stock. If
you choose organization as the planning level, the report does not include VMI
stock.
6.Indicate the type of item to include on the report. You can report on items under the
minimum quantity, items over the maximum quantity, or all min-max planned
items.
7.Enter the category
10.Enter the demand cutoff date and, optionally, the demand cutoff date offset. The
report includes demand on or before this date. If you do not checkNet Demandthis
calculation is for display purposes only.
11.Enter the supply cutoff date and, optionally the supply cutoff date offset. The
calculation includes open supply orders on or before this date.
12.EnterYesorNoto indicate whether to restock. If you have set the Planning Level to
Organization, the report generates requisitions or jobs according to the item's
Make/Buy flag. If you have set the Planning Level toSubinventory, the report
generates only requisitions.
13.If you are using theOrganizationPlanning Level, choose one of the following For
Repetitive Item options:Create Requisitionsfor items under minimum quantity,
Create Discrete Jobsfor items under minimum quantity or run theReport Only
without creating jobs or requisitions.
14.Enter the default delivery location.
15.Indicate whether to net reserved and unreserved orders.
16.Indicate whether to Net WIP Demand in the available quantity calculation. Net
demand is the unshipped sales quantity for the selected organization or
subinventory. You cannot set this to Yes if you are using subinventory level
planning.
17.Indicate whether to include PO, WIP, and Interface supply and non-nettable
subinventories.
18.Choose one of the following Display Format options:Display All Information, Don't
Display Supply/Demand Details(The report does not display the Minimum Order
Quantity, Maximum Order Quantity, and Multiple Order Quantity columns.), or
Don't Display Order Constraints(The report does not display the On Hand Quantity
column).


基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)内容概要:本文档围绕基于遗传算法的异构分布式系统任务调度算法展开研究,重点介绍了一种结合遗传算法的新颖优化方法,并通过Matlab代码实现验证其在复杂调度问题中的有效性。文中还涵盖了多种智能优化算法在生产调度、经济调度、车间调度、无人机路径规划、微电网优化等领域的应用案例,展示了从理论建模到仿真实现的完整流程。此外,文档系统梳理了智能优化、机器学习、路径规划、电力系统管理等多个科研方向的技术体系与实际应用场景,强调“借力”工具与创新思维在科研中的重要性。; 适合人群:具备一定Matlab编程基础,从事智能优化、自动化、电力系统、控制工程等相关领域研究的研究生及科研人员,尤其适合正在开展调度优化、路径规划或算法改进类课题的研究者; 使用场景及目标:①学习遗传算法及其他智能优化算法(如粒子群、蜣螂优化、NSGA等)在任务调度中的设计与实现;②掌握Matlab/Simulink在科研仿真中的综合应用;③获取多领域(如微电网、无人机、车间调度)的算法复现与创新思路; 阅读建议:建议按目录顺序系统浏览,重点关注算法原理与代码实现的对应关系,结合提供的网盘资源下载完整代码进行调试与复现,同时注重从已有案例中提炼可迁移的科研方法与创新路径。
【微电网】【创新点】基于非支配排序的蜣螂优化算法NSDBO求解微电网多目标优化调度研究(Matlab代码实现)内容概要:本文提出了一种基于非支配排序的蜣螂优化算法(NSDBO),用于求解微电网多目标优化调度问题。该方法结合非支配排序机制,提升了传统蜣螂优化算法在处理多目标问题时的收敛性和分布性,有效解决了微电网调度中经济成本、碳排放、能源利用率等多个相互冲突目标的优化难题。研究构建了包含风、光、储能等多种分布式能源的微电网模型,并通过Matlab代码实现算法仿真,验证了NSDBO在寻找帕累托最优解集方面的优越性能,相较于其他多目标优化算法表现出更强的搜索能力和稳定性。; 适合人群:具备一定电力系统或优化算法基础,从事新能源、微电网、智能优化等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于微电网能量管理系统的多目标优化调度设计;②作为新型智能优化算法的研究与改进基础,用于解决复杂的多目标工程优化问题;③帮助理解非支配排序机制在进化算法中的集成方法及其在实际系统中的仿真实现。; 阅读建议:建议读者结合Matlab代码深入理解算法实现细节,重点关注非支配排序、拥挤度计算和蜣螂行为模拟的结合方式,并可通过替换目标函数或系统参数进行扩展实验,以掌握算法的适应性与调参技巧。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值