hdu 1394 树状数组求逆序数

探讨使用树状数组解决求解逆序数问题的方法,包括实现思路与优化技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以前用过线段树求逆序数,这次想用树状数组试一下,悲催的是想了好久才想明白。。。。看来对树状数组还是不够了解啊。纠结。。。。题目:

Minimum Inversion Number

Time Limit: 2000/1000 MS (Java/Others)Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2413Accepted Submission(s): 1492


Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.

For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:

a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)

You are asked to write a program to find the minimum inversion number out of the above sequences.

Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.

Output
For each case, output the minimum inversion number on a single line.

Sample Input
 
 
10 1 3 6 9 0 8 5 7 4 2

Sample Output
 
 
16

ac代码:

#include <iostream> #include <cstdio> #include <string.h> int num[5005]; int total[5005]; int n; int lowbit(int x){ return x&(-x); } void update(int x){ while(x>0){ total[x]++; x-=lowbit(x); } //printf("***\n"); } int add(int x){ int ss=0; x+=1; while(x<=n){ ss+=total[x]; x+=lowbit(x); } return ss; } int main(){ //int n; while(~scanf("%d",&n)){ memset(num,0,sizeof(num)); memset(total,0,sizeof(total)); int sum=0; for(int i=0;i<n;++i){ scanf("%d",&num[i]); update(num[i]+1); sum+=add(num[i]+1); } //printf("sum===%d\n",sum); int k=0,s=sum; for(int i=0;i<n;++i){ k=sum-num[i]+(n-1-num[i]); sum=k; //printf("k==%d s==%d\n",k,s); if(k<s) s=k; } printf("%d\n",s); } return 0; }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值