Reusable Cells in UITableView

本文深入探讨了UITableView中UITableViewCell的复用机制,解释了如何通过加载NIB文件初始化单元格,并详细说明了复用队列的工作原理。文章指出,当单元格滑出可视窗口时,它们会被放入复用队列,以便在后续滚动时重复使用。

转自:http://www.eduoliveros.com/2009/07/reusable-cells-in-uitableview.html


It is a really well known issue that you need to “reuse” the cells to increase the performance of the table… what it is not so well explained is how this works in practice.

This is a snap of the code for reusing a UITableViewCell or loading the cell from a NIB file when there is no cell available for reusing:

- (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:(NSIndexPath *)indexPath {

static NSString *MyIdentifier = @"MyIdentifier";
UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:MyIdentifier];
if (cell == nil) {
NSArray *nib = [[NSBundle mainBundle] loadNibNamed:@"TestCell" owner:self options:nil];
cell = [nib objectAtIndex:1];
}
// Set up the cell
return cell;
}

The first time I saw this I thought the cell was loaded from the Nib file just once and then reused all the time, WRONG!!.
This way of thinking was causing me a lot of problems, basically how was the Table able to manage all the complexity of the views’ behaviour with just one cell… But once I read how all this works in fact, all came clear, crystal clear.

Some facts:
1. All the cells that are visible in the Table have its one UITableViewCell.
2. The UITableView only put cells in the reusable queue when they go outside the visual window.
3. In the first time, all the visible cells in the table are loaded using the Nib file (7,8, 10 times, depending on the height of the cells).
4. Once you start scrolling the table is when UITableView starts to put UITableViewCells in the reusable queue and can be reused in other positions of the table.

Why this behaviour is not explained in dequeueReusableCellWithIdentifier reference is really amazing. Probably because it’s evident… this entry is dedicated to those who are as dim as me.

基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)内容概要:本文档围绕基于遗传算法的异构分布式系统任务调度算法展开研究,重点介绍了一种结合遗传算法的新颖优化方法,并通过Matlab代码实现验证其在复杂调度问题中的有效性。文中还涵盖了多种智能优化算法在生产调度、经济调度、车间调度、无人机路径规划、微电网优化等领域的应用案例,展示了从理论建模到仿真实现的完整流程。此外,文档系统梳理了智能优化、机器学习、路径规划、电力系统管理等多个科研方向的技术体系与实际应用场景,强调“借力”工具与创新思维在科研中的重要性。; 适合人群:具备一定Matlab编程基础,从事智能优化、自动化、电力系统、控制工程等相关领域研究的研究生及科研人员,尤其适合正在开展调度优化、路径规划或算法改进类课题的研究者; 使用场景及目标:①学习遗传算法及其他智能优化算法(如粒子群、蜣螂优化、NSGA等)在任务调度中的设计与实现;②掌握Matlab/Simulink在科研仿真中的综合应用;③获取多领域(如微电网、无人机、车间调度)的算法复现与创新思路; 阅读建议:建议按目录顺序系统浏览,重点关注算法原理与代码实现的对应关系,结合提供的网盘资源下载完整代码进行调试与复现,同时注重从已有案例中提炼可迁移的科研方法与创新路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值