那些花儿

external  image 5641d6dd-417d-49ef-8a62-d9c50ef272dc.jpg

  那片笑声让我想起我的那些花儿

  在我生命每个角落静静为我开着

  我曾以为我会永远守在她身旁

  今天我们已经离去在人海茫茫

  她们都老了吧?

  她们在哪里呀?

  幸运的是我曾陪她们开放

  啦……想她.

  啦…她还在开吗?

  啦……去呀!

  她们已经被风吹走散落在天涯

  有些故事还没讲完那就算了吧

  那些心情在岁月中已经难辨真假

  如今这里荒草丛生没有了鲜花

  好在曾经拥有你们的春秋和冬夏

  她们都老了吧?

  她们在哪里呀?

  幸运的是我曾陪她们开放

  啦……想她

  啦…她还在开吗?

  啦……去呀!

  她们已经被风吹走散落在天涯

  啦......

  啦......

  啦......

  ......

  人们就像被风吹走插在了天涯

  她们都老了吧?

  她们还在开吗?

  我们就这样各自奔天涯......

也许我们惋惜的不是google,是自由...

内容概要:本文详细介绍了名为MoSca的系统,该系统旨在从单目随意拍摄的视频中重建和合成动态场景的新视角。MoSca通过4D Motion Scaffolds(运动支架)将视频数据转化为紧凑平滑编码的Motion Scaffold表示,并将场景几何和外观与变形场解耦,通过高斯融合进行优化。系统还解决了相机焦距和姿态的问题,无需额外的姿态估计工具。文章不仅提供了系统的理论背景,还给出了基于PyTorch的简化实现代码,涵盖MotionScaffold、GaussianFusion、MoScaSystem等核心组件。此外,文中深入探讨了ARAP变形模型、2D先验到3D的提升、动态高斯表示、相机参数估计等关键技术,并提出了完整的训练流程和性能优化技巧。 适用人群:具备一定计算机视觉和深度学习基础的研究人员和工程师,特别是对动态场景重建和新视角合成感兴趣的从业者。 使用场景及目标:①从单目视频中重建动态场景的新视角;②研究和实现基于4D Motion Scaffolds的动态场景表示方法;③探索如何利用预训练视觉模型的先验知识提升3D重建质量;④开发高效的动态场景渲染和优化算法。 其他说明:本文提供了详细的代码实现,包括简化版和深入扩展的技术细节。阅读者可以通过代码实践加深对MoSca系统的理解,并根据具体应用场景调整和扩展各个模块。此外,文中还强调了物理启发的正则化项和多模态先验融合的重要性,帮助实现更合理的变形和更高质量的渲染效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值