数学分支(整理)

算术suàn shù
研究自然数(正整数)、分数、小数的简单性质,及其加、减、乘、除、乘方、开方运算法则的一门学科。是数学中最基础的部分。由算术进一步发展起来的是代数学和数论。中国古代将数学和数学书也统称为算术。
数论shù lùn
数学是科学的皇后,数论是数学的皇后。 --卡尔·弗里德里希·高斯
数学的一个分科,主要研究正整数的性质及其有关的规律。按研究方法的不同,大致可分为初等数论﹑代数数论﹑几何数论﹑解析数论等。
数论是纯粹数学的分枝,专门研究整数的性质,产生了很多一般人也能理解而又悬而未解的问题,如哥德巴赫猜想。很多诸如此类的问题虽然形式上十分初等,但事实上却要用到许多艰深的数学知识。这一领域的研究从某种意义上推动了数学的发展,催生了大量的新思想和新方法。
分支
· 初等数论意指使用不超过高中程度的初等代数处理的数论问题,最主要的工具包括整数的整除性与同余。重要的结论包括中国余数定理、费马小定理、二次互逆律等等。
· 解析数论借助微积分及复分析的技术来研究关于整数的问题,主要又可以分为积性数论与加性数论两类。积性数论借由研究积性生成函数的性质来探讨质数分布的问题,其中质数定理与狄利克雷定理为这个领域中最著名的古典成果。加性数论则是研究整数的加法分解之可能性与表示的问题,华林问题是该领域最著名的课题。此外例如筛法、圆法等等都是属于这个范畴的重要议题。
· 代数数论引申代数数的话题,关于代数整数的研究,主要的研究目标是为了更一般地解决不定方程的问题,而为了达到此目的,这个领域与代数几何之间有相当关联, 比如类域论(class field theory) 就是此间的颠峰之作.
· 算术几何研究有理系数多变数方程组的有理数点, 其结构(主要是个数)和该方程组对应的代数簇的几何性质之间的关系, 有名的费玛猜想 , Mordell 猜想, Weil 猜想, 和七个一百万问题中的 Birch-Swiner-Dyer 猜想都属此类
· 几何数论主要在于透过几何观点研究整数(在此即格子点)的分布情形。最著名的定理为Minkowski 定理。
· 计算数论借助电脑的算法帮助数论的问题,例如素数测试和因数分解等和密码学息息相关的话题。
· 超越数论研究数的超越性,其中对于欧拉常数与特定的 Zeta 函数值之研究尤其令人感到兴趣。
· 组合数论利用组合和机率的技巧,非构造性地证明某些无法用初等方式处理的复杂结论。这是由艾狄胥开创的思路。
代数学dài shù xué
数学的一门重要分科。由算术发展而来。用字母表示数,研究数和字母以及字母表达式的运算和变换。早期代数学围绕求解代数方程和方程组而展开,主要包括:方程根的个数及分布,方程可解性的条件,方程根与系数的关系等。19世纪后期,代数学的研究对象扩大到向量、矩阵等更一般元素的运算规律,并采用公理化的方法,探究群、环、域等抽象代数结构的本质特性,从而形成近世代数学(又称抽象代数学)
另:韦达在其《分析引论》中第一次有意识地使用系统的代数字母与符号,有不同的字母代表已知量和未知量。他把符号性代数称作类的算术,同时规定了算术与代数的分界,认为代数运算施行于事物的类或形式,算术运算施行于具体的数。这就使代数成为研究一般类型的形式和方程的学问,因其抽象而应用更为广泛。
代数大致分为以下几类:
· 基本代数:学习以位置标志符(place holders)标记常数和变数的符号,与掌控包含这些符号的表示式及方程式的法则,来记录实数的运算性质。 (通常也会涉及到中等代数和大学代数的部分范围。)
· 抽象代数:讨论代数结构的性质,例如群、环、域等。这些代数结构是在集合上定义运算而来,而集合上的运算则适合某些公理。
· 线性代数:专门讨论矢量空间,包括矩阵的理论。 xiàn xìnɡ dài shù 代数学的一个分支。早期研究线性方程组的解法,后来拓展为研究一般向量空间的结构,以及线性变换的标准形式和不变量等。不仅在其他数学分支,而且在物理学、经济学和工程技术等方面都有广泛的应用。
· 泛代数,讨论所有代数结构的共有性质。
· 计算代数:讨论在电脑上进行数学的符号运算的演算法。
· 逻辑代数 luó jí dài shù
又称布尔代数开关代数。研究逻辑问题的一门数学。是现代数学中的一个重要分支。由英国数学家布尔提出。其逻辑变量的取值仅为“0”“1”。基本逻辑运算有等。是设计计算机的有力工具。
几何学(geometry
是研究空间关系的数学分支,有时简称为几何。几何是近代数学的两大领域之一,另外一个是研究数量关系的领域。现代概念上的几何其抽象程度和一般化程度大幅提高,并与分析、抽象代数和拓扑学紧密结合,很多分支几乎无法认出是从早期的几何学传承而来。
· 欧几里得几何ōu jǐ lǐ dé jǐ简称欧氏几何。几何学的一门分科。公元前3世纪,古希腊数学家欧几里得把人们公认的一些几何知识作为定义和公理,在此基础上研究图形的性质,推导出一系列定理,组成演绎体系,写出《几何原本》,形成了欧氏几何。在其公理体系中,最重要的是平行公理,由于对这一公理的不同认识,导致非欧几何的产生。按所讨论的图形在平面上或空间中,分别称为平面几何立体几何
· 解析几何jiě xī jǐ用代数方法解决几何学问题的学科。解析几何中,用坐标表示点,用坐标间的关系表示和研究空间图形的性质。
数理逻辑与数学基础:递归论, 模型论, 证明论, 公理集合证, 数理逻辑范畴论
数理逻辑shù lǐ luó jí
亦称符号逻辑。狭义指用数学方法研究数学中的演绎思维以及数学基础的学科。广义指一切用符号和数学方法处理和研究演绎法的学问。既是数学的一个分支,又是逻辑学的一个分支。数理逻辑对数学研究和工程技术有重要意义,对一般思维中某些问题的解决也有成效。
数理逻辑是数学的一个分支,其研究对象是对证明和计算这两个直观概念进行符号化以后的形式系统。数理逻辑是数学基础的一个不可缺少的组成部分。
数理逻辑的研究范围是逻辑中可被数学模式化的部分。以前称为符号逻辑(相对于哲学逻辑),又称元数学,后者的使用现已局限于证明论的某些方面。
模型论是从集合论的论述角度对数学概念表现(representation)的研究,或者说是对于作为数学系统基础的模型的研究。粗略地说,该学科假定有一些既存的数学对象,然后研究:当这些对象之间的一些运算或者一些关系乃至一组公理被给定时,可以相应证明出什么,以及如何证明。
证明论是数理逻辑的一个分支,它将数学证明表达为形式化的数学客体,从而通过数学技术来简化对他们的分析。证明通常用归纳式地定义的数据结构来表达,例如链表,盒链表,或者树,它们根据逻辑系统的公理和推理规则构造。因此,证明论本质上是语法逻辑,和本质上是语义学的模型论形相反。和模型论,公理化集合论,以及递归论一起,证明论被称为数学基础的四大支柱之一。
递归论或可计算性理论,是一个数理逻辑分支。它起源于可计算函数和图灵度的研究。它的领域增长为包括一般性的可计算性和可定义性的研究。在这些领域中,这门理论同证明论和能行描述集合论(effective descriptive set theory)有所重叠。
公理化集合論是數學的一門分支。在數學中,公理化集合理是集合論透過建立一階邏輯的嚴謹重整,以解決樸素集合論中出現的悖論。集合論的基礎主要由德國數學家格奧爾格·康托爾在19世紀未建立。
范畴论是抽象地处理数学结构以及结构之间联系的一门数学理论。有些人开玩笑的称之为一般化的抽象的胡说”.范畴论出现在很多数学分支中,以及理论计算机科学和数学物理的一些领域。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值