js修改二級地址下拉框

<select name="addressCity" class="txtBlack12" id="addressCity" onchange="cityChange('addressCity', 'addressCounty');">
                <option value="">請選擇</option>
	<option value="台北市">台北市</option>
	<option value="基隆市">基隆市</option>
	<option value="台北縣">台北縣</option>
	<option value="宜蘭縣">宜蘭縣</option>
	<option value="桃園縣">桃園縣</option>
	<option value="新竹市">新竹市</option>
	<option value="新竹縣">新竹縣</option>
	<option value="苗栗縣">苗栗縣</option>
	<option value="台中市">台中市</option>
	<option value="台中縣">台中縣</option>
	<option value="彰化縣">彰化縣</option>
	<option value="南投縣">南投縣</option>
	<option value="嘉義市">嘉義市</option>
	<option value="嘉義縣">嘉義縣</option>
	<option value="雲林縣">雲林縣</option>
	<option value="台南市">台南市</option>
	<option value="台南縣">台南縣</option>
	<option value="高雄市">高雄市</option>
	<option value="高雄縣">高雄縣</option>
	<option value="屏東縣">屏東縣</option>
	<option value="花蓮縣">花蓮縣</option>
	<option value="台東縣">台東縣</option>
	<option value="澎湖縣">澎湖縣</option>
	<option value="金門縣">金門縣</option>
	<option value="連江縣">連江縣</option>
</select>
</label>
<label>
         <select name="addressCounty" class="txtBlack12" id="addressCounty">
                  <option value="">請選擇</option>
         </select>
</label>

 

//根據縣市選擇
var city_x = new Array();
city_x[''] = ["請選擇"];
city_x['基隆市'] = ["仁愛區","信義區","中正區","中山區","安樂區","暖暖區","七堵區"];
city_x['台北市'] = ["中正區","大同區","中山區","松山區","大安區","萬華區","信義區","士林區","北投區","內湖區","南港區","文山區"];
city_x['台北縣'] = ["萬里鄉","金山鄉","板橋市","汐止市","深坑鄉","石碇鄉","瑞芳鎮","平溪鄉","雙溪鄉","貢寮鄉","新店市","坪林鄉","烏來鄉","永和市","中和市","土城市","三峽鎮","樹林市","鶯歌鎮","三重市","新莊市","泰山鄉","林口鄉","蘆洲市","五股鄉","八里鄉","淡水鎮","三芝鄉","石門鄉"];
city_x['桃園縣'] = ["中壢市","平鎮市","龍潭鄉","楊梅鎮","新屋鄉","觀音鄉","桃園市","龜山鄉","八德市","大溪鎮","復興鄉","大園鄉","蘆竹鄉"];
city_x['新竹市'] = ["新竹市"];
city_x['新竹縣'] = ["竹北市","湖口鄉","新豐鄉","新埔鄉","關西鄉","芎林鄉","寶山鄉","竹東鄉","五峰鄉","橫山鄉","尖石鄉","北埔鄉","峨眉鄉"];
city_x['苗栗縣'] = ["竹南鎮","頭份鎮","三灣鄉","南庄鄉","獅潭鄉","後龍鎮","通霄鎮","苑裡鎮","栗市","造橋鄉","頭屋鄉","公館鄉","大湖鄉","泰安鄉","銅鑼鄉","三義鄉","西湖鄉","卓蘭鎮"];
city_x['台中市'] = ["中區","東區","南區","西區","北區","北屯區","西屯區","南屯區"];
city_x['台中縣'] = ["太平市","大里市","霧峰鄉","烏日鄉","豐原市","后里鄉","石岡鄉","東勢鎮","和平鄉","新社鄉","潭子鄉","大雅鄉","神岡鄉","大肚鄉","沙鹿鎮","龍井鄉","梧棲鎮","清水鎮","大甲鎮","外埔鄉","大安鄉"];
city_x['彰化縣'] = ["彰化市","芬園鄉","花壇鄉","秀水鄉","鹿港鎮","福興鄉","線西鄉","和美鎮","伸港鄉","員林鎮","社頭鄉","永靖鄉","埔心鄉","溪湖鎮","大村鄉","埔鹽鄉","田中鎮","北斗鎮","田尾鄉","埤頭鄉","溪州鄉","竹塘鄉","二林鎮","大城鄉","芳苑鄉","二水鄉"];
city_x['南投縣'] = ["南投市","中寮鄉","草屯鎮","國姓鄉","埔里鎮","仁愛鄉","名間鄉","集集鎮","水里鄉","魚池鄉","信義鄉","竹山鎮","鹿谷鄉"];
city_x['雲林縣'] = ["斗南鎮","大埤鄉","虎尾鎮","土庫鎮","褒忠鄉","東勢鄉","臺西鄉","崙背鄉","麥寮鄉","斗六市","林內鄉","古坑鄉","莿桐鄉","西螺鎮","二崙鄉","北港鎮","水林鄉","口湖鄉","四湖鄉","元長鄉"];
city_x['嘉義市'] = ["嘉義市"];
city_x['嘉義縣'] = ["番路鄉","梅山鄉","竹崎鄉","阿里山鄉","中埔鄉","大埔鄉","水上鄉","鹿草鄉","太保市","朴子市","東石鄉","六腳鄉","新港鄉","民雄鄉","大林鎮","溪口鄉","義竹鄉","布袋鎮"];
city_x['台南市'] = ["中區","東區","南區","西區","北區","安平區","安南區"];
city_x['台南縣'] = ["永康市","歸仁鄉","新化鎮","左鎮鄉","玉井鄉","楠西鄉","南化鄉","仁德鄉","關廟鄉","龍崎鄉","官田鄉","麻豆鎮","佳里鎮","西港鄉","七股鄉","將軍鄉","學甲鎮","北門鄉","新營市","後壁鄉","白河鎮","東山鄉","六甲鄉","下營鄉","柳營鄉","鹽水鎮","善化鎮","大內鄉","山上鄉","新市鄉","安定鄉"];
city_x['高雄市'] = ["新興區","前金區","苓雅區","鹽埕區","鼓山區","旗津區","前鎮區","三民區","楠梓區","小港區","左營區"];
city_x['高雄縣'] = ["仁武鄉","大社鄉","岡山鎮","路竹鄉","阿蓮鄉","田寮鄉","燕巢鄉","橋頭鄉","梓官鄉","彌陀鄉","永安鄉","湖內鄉","鳳山市","大寮鄉","林園鄉","鳥松鄉","大樹鄉","旗山鎮","美濃鎮","六龜鄉","內門鄉","杉林鄉","甲仙鄉","桃源鄉","三民鄉","茂林鄉","茄萣鄉"];
city_x['屏東縣'] = ["屏東市","三地門鄉","霧臺鄉","瑪家鄉","九如鄉","里港鄉","高樹鄉","鹽埔鄉","長治鄉","麟洛鄉","竹田鄉","內埔鄉","萬丹鄉","潮州鎮","泰武鄉","來義鄉","萬巒鄉","崁頂鄉","新埤鄉","南州鄉","林邊鄉","東港鎮","琉球鄉","佳冬鄉","新園鄉","枋寮鄉","枋山鄉","春日鄉","獅子鄉","車城鄉","牡丹鄉","恆春鎮","滿州鄉"];
city_x['宜蘭縣'] = ["宜蘭市","頭城鎮","礁溪鄉","壯圍鄉","員山鄉","羅東鎮","三星鄉","大同鄉","五結鄉","冬山鄉","蘇澳鎮","南澳鄉"];
city_x['花蓮縣'] = ["花蓮市","新城鄉","秀林鄉","吉安鄉","壽豐鄉","鳳林鎮","光復鄉","豐濱鄉","瑞穗鄉","萬榮鄉","玉里鎮","卓溪鄉","富里鄉"];
city_x['臺東縣'] = ["臺東市","綠島鄉","蘭嶼鄉","延平鄉","卑南鄉","鹿野鄉","關山鎮","海端鄉","池上鄉","東河鄉","成功鎮","長濱鄉","太麻里","金峰鄉","大武鄉","達仁鄉"];
city_x['澎湖縣'] = ["馬公市","西嶼鄉","望安鄉","七美鄉","白沙鄉","湖西鄉"];
city_x['金門縣'] = ["金沙鎮","金湖鎮","金寧鄉","金城鎮","烈嶼鄉","烏坵鄉"];
city_x['連江縣'] = ["南竿鄉","北竿鄉","莒光鄉","東引鄉"];
function cityChange( city_id , county_id ){
var city = document.getElementById(city_id);
var county = document.getElementById(county_id) ;
county.length = 1 ;
if(typeof(city_x[city.value])=='undefined') return;
for( var i = 0 ; i < city_x[city.value].length ; i++ ){
county.options[i] = new Option(city_x[city.value][i], city_x[city.value][i]);
}
}

 

内容概要:本文介绍了一个基于多传感器融合的定位系统设计方案,采用GPS、里程计和电子罗盘作为定位传感器,利用扩展卡尔曼滤波(EKF)算法对多源传感器数据进行融合处理,最终输出目标的滤波后位置信息,并提供了完整的Matlab代码实现。该方法有效提升了定位精度与稳定性,尤其适用于存在单一传感器误差或信号丢失的复杂环境,如自动驾驶、移动采用GPS、里程计和电子罗盘作为定位传感器,EKF作为多传感器的融合算法,最终输出目标的滤波位置(Matlab代码实现)机器人导航等领域。文中详细阐述了各传感器的数据建模方式、状态转移与观测方程构建,以及EKF算法的具体实现步骤,具有较强的工程实践价值。; 适合人群:具备一定Matlab编程基础,熟悉传感器原理和滤波算法的高校研究生、科研人员及从事自动驾驶、机器人导航等相关领域的工程技术人员。; 使用场景及目标:①学习和掌握多传感器融合的基本理论与实现方法;②应用于移动机器人、无人车、无人机等系统的高精度定位与导航开发;③作为EKF算法在实际工程中应用的教学案例或项目参考; 阅读建议:建议读者结合Matlab代码逐行理解算法实现过程,重点关注状态预测与观测更新模块的设计逻辑,可尝试引入真实传感器数据或仿真噪声环境以验证算法鲁棒性,并进一步拓展至UKF、PF等更高级滤波算法的研究与对比。
内容概要:文章围绕智能汽车新一代传感器的发展趋势,重点阐述了BEV(鸟瞰图视角)端到端感知融合架构如何成为智能驾驶感知系统的新范式。传统后融合与前融合方案因信息丢失或算力需求过高难以满足高阶智驾需求,而基于Transformer的BEV融合方案通过统一坐标系下的多源传感器特征融合,在保证感知精度的同时兼顾算力可行性,显著提升复杂场景下的鲁棒性与系统可靠性。此外,文章指出BEV模型落地面临大算力依赖与高数据成本的挑战,提出“数据采集-模型训练-算法迭代-数据反哺”的高效数据闭环体系,通过自动化标注与长尾数据反馈实现算法持续进化,降低对人工标注的依赖,提升数据利用效率。典型企业案例进一步验证了该路径的技术可行性与经济价值。; 适合人群:从事汽车电子、智能驾驶感知算法研发的工程师,以及关注自动驾驶技术趋势的产品经理和技术管理者;具备一定自动驾驶基础知识,希望深入了解BEV架构与数据闭环机制的专业人士。; 使用场景及目标:①理解BEV+Transformer为何成为当前感知融合的主流技术路线;②掌握数据闭环在BEV模型迭代中的关键作用及其工程实现逻辑;③为智能驾驶系统架构设计、传感器选型与算法优化提供决策参考; 阅读建议:本文侧重技术趋势分析与系统级思考,建议结合实际项目背景阅读,重点关注BEV融合逻辑与数据闭环构建方法,并可延伸研究相关企业在舱泊一体等场景的应用实践。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值