Java String的序列化小结

String对我们来说太熟悉了,因为它无处不在,更因为用String可以描述这个世界几乎所有的东西,甚至于为了描述精确的数值都需要String出马(因为计算机眼中的二进制和人类眼中的十进制间总有那么点隔膜)。因为熟悉而变得简单,也容易被忽略。今天记录一下关于String的容易被忽略的两个问题。

  • 字符串重用——节省内存

因为字符串太多,如果能够重用则能够节省很大的内存。首先看下面一个例子:

        String string1 = “HELLOHELLO”;

        String string2 = “HELLO” + “HELLO”;

上面创建了几个字符串?1 or 2?后者是动态创建的,不过相信JVM可以对其直接优化的,因为编译时已经知道内容了,猜测是一个instance,即同一个char数组。Heapdump出来后观察果然是一个。

String string3 = args[0]+ args[1];

输入参数HELLO HELLO? 字符串变成几个?没错啊,是两个HELLOHELLO了。Dump heap后观察,果然是两个了。(其实不用dump healp,debug也可以看出来,string1和string3中的char[]指向地址是不一样的)。

依此延伸,可以而知由java反序列化而来的那些string也是不一样的。实例如下;

    public final static void main(String[] args) throws Exception {

        new StringDeserialized().testDescirialized();

    }

    public void testDescirialized() throws Exception {

        String testString = “HELLOHELLO”;

        ObjectOutputStream dataOutStream = new ObjectOutputStream(new FileOutputStream(“./stringdeserialized.data”));

        for (int i = 0; i < 1000; i++)

            dataOutStream.writeObject(testString);

        dataOutStream.close();

        List<String> readAgainList = new ArrayList<String>(100);

        for (int i = 0; i < 100; i++) {

            ObjectInputStream dataInputStream = new ObjectInputStream(new FileInputStream(“./stringdeserialized.data”));

            readAgainList.add((String) dataInputStream.readObject());

            dataInputStream.close();

        }

        Thread.sleep(Integer.MAX_VALUE);

    }

 

截图是heap dump出来的,有HELLOHELLO的个数有101个,占用的size>8080。对于JVM的内存使用可参考 http://www.javamex.com/tutorials/memory/object_memory_usage.shtml

问题来了,系统维护的数据大多是字符串信息,比如configserver,而很多的信息都是同一个字符串,那么反复的从网络序列化而来,占用多的Heap。当然自己可以写一个weak hashmap来维护,重用这些字符串。大家知道JVM中有String Pool,使用它无疑最好不过。查找String源码,发现intern()的注释如下:

    * When the intern method is invoked, if the pool already contains a

     * string equal to this <code>String</code> object as determined by

     * the {@link #equals(Object)} method, then the string from the pool is

     * returned. Otherwise, this <code>String</code> object is added to the

     * pool and a reference to this <code>String</code> object is returned.

于是改变上面一行代码为:

readAgainList.add(((String) dataInputStream.readObject()).intern());

再次Heap dump分析如下,另外可以看出一个包含10个字符的String占用的Heap是80byte:

  •  字符串序列化的速度

目前CS处理为了支持所谓的任意类型数据,CS采用了一个技巧,用Swizzle来保存java序列化后的byte类型,Server端无需反序列化就能保存任意类型的data;这样的坏处有两个:通用的Java序列化效率不高;协议不通用,对其他语言支持不行。因为目前的数据信息基本都是String类型,而对对String数据的专门处理,可以通过String内部的byte数组(UTF-8)类表示,这样也便于其他语言解析。可以考虑增加对publish(String)的支持。于是做了如下测试来比较对String不同serialize/deserialize的速率和大小。

结果是writeUTF最小最快,对于100char的String,差距是数量级的相当明显,虽然Swizzle使用了一个技巧,当对同一个swizzle instance多次传输时,无需重复的序列化。

PS:Swizzle简单的说就是把信息包装起来,然后把序列化的byte流缓存起来,这样如果同样的一个信息要推送/发送N次,就无能减少N-1次的序列化时间。

public class CompareSerialization {

    public String generateTestData(int stringLength) {

        Random random = new Random();

        StringBuilder builder = new StringBuilder(stringLength);

        for (int j = 0; j < stringLength; j++) {

            builder.append((char) random.nextInt(127));

        }

        return builder.toString();

    }

    public int testJavaDefault(String data) throws Exception {

        ObjectOutputStream outputStream = null;

        ObjectInputStream inputStream = null;

        try {

            ByteArrayOutputStream byteArray = new ByteArrayOutputStream();

            outputStream = new ObjectOutputStream(byteArray);

            outputStream.writeObject(data);

            outputStream.flush();

            inputStream = new ObjectInputStream(new ByteArrayInputStream(byteArray.toByteArray()));

            inputStream.readObject();

            return byteArray.size();

        }

        finally {

            outputStream.close();

            inputStream.close();

        }

    }

    public int testJavaDefaultBytes(String data) throws Exception {

        ObjectOutputStream outputStream = null;

        ObjectInputStream inputStream = null;

        try {

            ByteArrayOutputStream byteArray = new ByteArrayOutputStream();

            outputStream = new ObjectOutputStream(byteArray);

            outputStream.writeBytes(data);

            outputStream.flush();

            inputStream = new ObjectInputStream(new ByteArrayInputStream(byteArray.toByteArray()));

            byte[] bytes = new byte[byteArray.size()];

            inputStream.read(new byte[byteArray.size()]);

            new String(bytes);

            return byteArray.size();

        }

        finally {

            outputStream.close();

            inputStream.close();

        }

    }

    public int testSwizzle(Swizzle data) throws Exception {

        ObjectOutputStream outputStream = null;

        ObjectInputStream inputStream = null;

        try {

            ByteArrayOutputStream byteArray = new ByteArrayOutputStream();

            outputStream = new ObjectOutputStream(byteArray);

            outputStream.writeObject(data);

            outputStream.flush();

            inputStream = new ObjectInputStream(new ByteArrayInputStream(byteArray.toByteArray()));

            inputStream.readObject();

            return byteArray.size();

        }

        finally {

            outputStream.close();

            inputStream.close();

        }

    }

    public int testStringUTF(String data) throws Exception {

        ObjectOutputStream outputStream = null;

        ObjectInputStream inputStream = null;

        try {

            ByteArrayOutputStream byteArray = new ByteArrayOutputStream();

            outputStream = new ObjectOutputStream(byteArray);

            outputStream.writeUTF(data);

            outputStream.flush();

            inputStream = new ObjectInputStream(new ByteArrayInputStream(byteArray.toByteArray()));

            inputStream.readUTF();

            return byteArray.size();

        }

        finally {

            outputStream.close();

            inputStream.close();

        }

    }

    public final static void main(String[] args) throws Exception {

        CompareSerialization compare = new CompareSerialization();

        String data = compare.generateTestData(Integer.parseInt(args[0]));

        Swizzle swizzle = new Swizzle(data);

        System.out.println(“testJavaDefault size on networking:” + compare.testJavaDefault(data));

        System.out.println(“testJavaDefaultBytes size on networking:” + compare.testJavaDefaultBytes(data));

        System.out.println(“testStringUTF size on networking:” + compare.testStringUTF(data));

        System.out.println(“testSwizzle size on networking:” + compare.testSwizzle(swizzle));

        // warm up

        for (int i = 0; i < 100; i++) {

            compare.testJavaDefault(data);

            compare.testJavaDefaultBytes(data);

            compare.testStringUTF(data);

            compare.testSwizzle(swizzle);

        }

        long startTime = System.currentTimeMillis();

        for (int i = 0; i < 10000; i++) {

            compare.testJavaDefault(data);

        }

        long endTime = System.currentTimeMillis();

        System.out.println(“testJavaDefault using time:” + (endTime – startTime));

        startTime = System.currentTimeMillis();

        for (int i = 0; i < 10000; i++) {

            compare.testJavaDefaultBytes(data);

        }

        endTime = System.currentTimeMillis();

        System.out.println(“testJavaDefaultBytes using time:” + (endTime – startTime));

        startTime = System.currentTimeMillis();

        for (int i = 0; i < 10000; i++) {

            compare.testStringUTF(data);

        }

        endTime = System.currentTimeMillis();

        System.out.println(“testStringUTF using time:” + (endTime – startTime));

        startTime = System.currentTimeMillis();

        for (int i = 0; i < 10000; i++) {

            compare.testSwizzle(swizzle);

        }

        endTime = System.currentTimeMillis();

        System.out.println(“testSwizzle using time:” + (endTime – startTime));

    }

}

在HarmonyOS平台上,序列化和反序列化操作主要用于实现对象与数据流之间的转换,以便于数据的持久化存储或跨进程通信。HarmonyOS SDK 提供了多种支持序列化的方式,包括基于Java序列化机制、JSON序列化工具以及用于高性能通信的序列化框架。 ### 通用Java序列化 HarmonyOS应用开发支持Java语言,因此可以使用Java原生的序列化机制。通过实现 `Serializable` 接口并使用 `ObjectOutputStream` 和 `ObjectInputStream`,开发者可以实现对象的序列化与反序列化。这种方式适用于简单的本地数据存储或传输需求,但不推荐用于跨平台或高性能场景,因为其效率较低且缺乏可读性[^2]。 ```java public class Person implements Serializable { private String name; private int age; // 构造函数、Getter和Setter } // 序列化示例 try (ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("person.ser"))) { Person person = new Person(); oos.writeObject(person); } catch (IOException e) { e.printStackTrace(); } ``` ### JSON序列化 对于需要可读性和跨平台兼容性的场景,HarmonyOS推荐使用JSON格式进行序列化。开发者可以使用 `org.json` 包或引入第三方库如 `Gson` 或 `Jackson` 来实现高效的JSON序列化与反序列化。这种方式广泛应用于网络通信和本地数据存储中,具有良好的可读性和灵活性。 ```java // 使用org.json示例 JSONObject jsonObject = new JSONObject(); jsonObject.put("name", "Alice"); jsonObject.put("age", 30); String jsonString = jsonObject.toString(); JSONObject parsedObject = new JSONObject(jsonString); ``` ### HarmonyOS专用序列化工具 HarmonyOS还提供了一些专用的序列化工具和框架,用于支持高性能的跨进程通信(IPC)和远程过程调用(RPC)。例如,`Parcel` 是一个轻量级的序列化工具,适用于在不同线程或进程之间传递数据。`Parcel` 提供了高效的二进制序列化能力,适合用于系统内部通信。 ```java Parcel parcel = Parcel.obtain(); Person person = new Person("John", 25); // 序列化 parcel.writeString(person.getName()); parcel.writeInt(person.getAge()); // 反序列化 String name = parcel.readString(); int age = parcel.readInt(); ``` 此外,HarmonyOS也支持基于IDL(接口定义语言)的序列化机制,用于实现跨进程服务调用。通过定义 `.idl` 文件,开发者可以生成用于通信的接口代码,系统会自动处理底层的序列化与反序列化逻辑。 ### 小结 HarmonyOS平台提供了多种序列化工具和方法,包括Java原生序列化、JSON序列化以及专用的 `Parcel` 和IDL机制。开发者可以根据具体需求选择合适的工具,以实现高效、可靠的数据转换和通信。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值