某个句子

博客强调永远不要问自己还没准备好听到答案的问题,提醒人们在提问前要做好心理准备,避免因问题的答案带来困扰。
永远不要问一个你还没准备好听到答案的问题
基于51单片机,实现对直流电机的调速、测速以及正反转控制。项目包含完整的仿真文件、源程序、原理图和PCB设计文件,适合学习和实践51单片机在电机控制方面的应用。 功能特点 调速控制:通过按键调整PWM占空比,实现电机的速度调节。 测速功能:采用霍尔传感器非接触式测速,实时显示电机转速。 正反转控制:通过按键切换电机的正转和反转状态。 LCD显示:使用LCD1602液晶显示屏,显示当前的转速和PWM占空比。 硬件组成 主控制器:STC89C51/52单片机(与AT89S51/52、AT89C51/52通用)。 测速传感器:霍尔传感器,用于非接触式测速。 显示模块:LCD1602液晶显示屏,显示转速和占空比。 电机驱动:采用双H桥电路,控制电机的正反转和调速。 软件设计 编程语言:C语言。 开发环境:Keil uVision。 仿真工具:Proteus。 使用说明 液晶屏显示: 第一行显示电机转速(单位:转/分)。 第二行显示PWM占空比(0~100%)。 按键功能: 1键:加速键,短按占空比加1,长按连续加。 2键:减速键,短按占空比减1,长按连续减。 3键:反转切换键,按下后电机反转。 4键:正转切换键,按下后电机正转。 5键:开始暂停键,按一下开始,再按一下暂停。 注意事项 磁铁和霍尔元件的距离应保持在2mm左右,过近可能会在电机转动时碰到霍尔元件,过远则可能导致霍尔元件无法检测到磁铁。 资源文件 仿真文件:Proteus仿真文件,用于模拟电机控制系统的运行。 源程序:Keil uVision项目文件,包含完整的C语言源代码。 原理图:电路设计原理图,详细展示了各模块的连接方式。 PCB设计:PCB布局文件,可用于实际电路板的制作。
【四旋翼无人机】具备螺旋桨倾斜机构的全驱动四旋翼无人机:建模与控制研究(Matlab代码、Simulink仿真实现)内容概要:本文围绕具备螺旋桨倾斜机构的全驱动四旋翼无人机展开研究,重点进行了系统建模与控制策略的设计与仿真验证。通过引入螺旋桨倾斜机构,该无人机能够实现全向力矢量控制,从而具备更强的姿态调节能力和六自由度全驱动特性,克服传统四旋翼欠驱动限制。研究内容涵盖动力学建模、控制系统设计(如PID、MPC等)、Matlab/Simulink环境下的仿真验证,并可能涉及轨迹跟踪、抗干扰能力及稳定性分析,旨在提升无人机在复杂环境下的机动性与控制精度。; 适合人群:具备一定控制理论基础和Matlab/Simulink仿真能力的研究生、科研人员及从事无人机系统开发的工程师,尤其适合研究先进无人机控制算法的技术人员。; 使用场景及目标:①深入理解全驱动四旋翼无人机的动力学建模方法;②掌握基于Matlab/Simulink的无人机控制系统设计与仿真流程;③复现硕士论文级别的研究成果,为科研项目或学术论文提供技术支持与参考。; 阅读建议:建议结合提供的Matlab代码与Simulink模型进行实践操作,重点关注建模推导过程与控制器参数调优,同时可扩展研究不同控制算法的性能对比,以深化对全驱动系统控制机制的理解。
任务描述 本关任务:实现二元语言模型的数据平滑,并利用平滑后的数据计算句子概率。 相关知识 为了完成本关任务,你需要掌握:1.模型平滑化。2.good-turning平滑。 模型平滑 在使用语言模型直接计算某个句子出现的概率时,可能会由于某个单词或单词对出现的概率为0而导致整个句子出现的概率为0。 例如下面这个场景: 例子 在上面的场景中,由于部分单词对出现的概率为0,导致最终两句话出现的概率均为0。但实际上,s1=“今天没有训练营”比s2=“今天训练营没有”更符合语法习惯,我们也更希望计算出来的P(s1)大于P(s2)。 一般来说,语言模型的平滑处理可分为以下三类: Discounting(折扣):通过给概率不为0的项打折扣,来提高概率为0的项的概率; Interpolation(插值):在使用N-gram模型计算某一项的概率时,同时结合低阶的模型所计算出的概率; Back‐off:approximate counts of unobserved N‐gram based on the proportion of back‐off events (e.g., N‐1 gram)。 这里我们主要介绍与使用Discounting中的good-turning平滑方法。 good-turning平滑 Good-Turing技术是在1953年由古德(I.J.Good)引用图灵(Turing)的方法而提出来的,其基本思想是:用观察计数较高的N元语法数重新估计概率量的大小,并把它指派给那些具有零计数或者较低计数的N元语法。涉及的符号含义为: c:某个N元语法出现的频数。 Nc:出现次数为c的 N-gram 词组的个数,是频数的频数 , c*:Good-Turing平滑计数 , 设N为测试元组集合中元组的数目,则有如下公式: , 通过新频数可计算出经过good-turing平滑后的元组概率,公式如下: , 编程要求 根据提示,在右侧编辑器补充代码,编写平滑函数,计算句子的概率 测试说明 平台会对你编写的代码进行测试: 语料库: 研究生物很有意思。他大学时代是研究生物的。生物专业是他的首选目标。他是研究生。 测试输入:他是研究物理的 预期输出:5.6888888888888895e-05import jieba #语料句子 sentence_ori="研究生物很有意思。他大学时代是研究生物的。生物专业是他的首选目标。他是研究生。" #测试句子 sentence_test=input() #任务:编写平滑函数完成数据平滑,利用平滑数据完成对2-gram模型的建立,计算测试句子概率并输出结果 # ********** Begin *********# # ********** End **********#
05-20
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值