某个句子

博客强调永远不要问自己还没准备好听到答案的问题,提醒人们在提问前要做好心理准备,避免因问题的答案带来困扰。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

永远不要问一个你还没准备好听到答案的问题
内容概要:本文针对国内加密货币市场预测研究较少的现状,采用BP神经网络构建了CCi30指数预测模型。研究选取2018年3月1日至2019年3月26日共391天的数据作为样本,通过“试凑法”确定最优隐结点数目,建立三层BP神经网络模型对CCi30指数收盘价进行预测。论文详细介绍了数据预处理、模型构建、训练及评估过程,包括数据归一化、特征工程、模型架构设计(如输入层、隐藏层、输出层)、模型编译与训练、模型评估(如RMSE、MAE计算)以及结果可视化。研究表明,该模型在短期内能较准确地预测指数变化趋势。此外,文章还讨论了隐层节点数的优化方法及其对预测性能的影响,并提出了若干改进建议,如引入更多技术指标、优化模型架构、尝试其他时序模型等。 适合人群:对加密货币市场预测感兴趣的研究人员、投资者及具备一定编程基础的数据分析师。 使用场景及目标:①为加密货币市场投资者提供一种新的预测工具和方法;②帮助研究人员理解BP神经网络在时间序列预测中的应用;③为后续研究提供改进方向,如数据增强、模型优化、特征工程等。 其他说明:尽管该模型在短期内表现出良好的预测性能,但仍存在一定局限性,如样本量较小、未考虑外部因素影响等。因此,在实际应用中需谨慎对待模型预测结果,并结合其他分析工具共同决策。
任务描述 本关任务:实现二元语言模型的数据平滑,并利用平滑后的数据计算句子概率。 相关知识 为了完成本关任务,你需要掌握:1.模型平滑化。2.good-turning平滑。 模型平滑 在使用语言模型直接计算某个句子出现的概率时,可能会由于某个单词或单词对出现的概率为0而导致整个句子出现的概率为0。 例如下面这个场景: 例子 在上面的场景中,由于部分单词对出现的概率为0,导致最终两句话出现的概率均为0。但实际上,s1=“今天没有训练营”比s2=“今天训练营没有”更符合语法习惯,我们也更希望计算出来的P(s1)大于P(s2)。 一般来说,语言模型的平滑处理可分为以下三类: Discounting(折扣):通过给概率不为0的项打折扣,来提高概率为0的项的概率; Interpolation(插值):在使用N-gram模型计算某一项的概率时,同时结合低阶的模型所计算出的概率; Back‐off:approximate counts of unobserved N‐gram based on the proportion of back‐off events (e.g., N‐1 gram)。 这里我们主要介绍与使用Discounting中的good-turning平滑方法。 good-turning平滑 Good-Turing技术是在1953年由古德(I.J.Good)引用图灵(Turing)的方法而提出来的,其基本思想是:用观察计数较高的N元语法数重新估计概率量的大小,并把它指派给那些具有零计数或者较低计数的N元语法。涉及的符号含义为: c:某个N元语法出现的频数。 Nc:出现次数为c的 N-gram 词组的个数,是频数的频数 , c*:Good-Turing平滑计数 , 设N为测试元组集合中元组的数目,则有如下公式: , 通过新频数可计算出经过good-turing平滑后的元组概率,公式如下: , 编程要求 根据提示,在右侧编辑器补充代码,编写平滑函数,计算句子的概率 测试说明 平台会对你编写的代码进行测试: 语料库: 研究生物很有意思。他大学时代是研究生物的。生物专业是他的首选目标。他是研究生。 测试输入:他是研究物理的 预期输出:5.6888888888888895e-05import jieba #语料句子 sentence_ori="研究生物很有意思。他大学时代是研究生物的。生物专业是他的首选目标。他是研究生。" #测试句子 sentence_test=input() #任务:编写平滑函数完成数据平滑,利用平滑数据完成对2-gram模型的建立,计算测试句子概率并输出结果 # ********** Begin *********# # ********** End **********#
05-20
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值