Apache Hadoop 项目介绍

Hadoop是一种开源软件框架,用于处理大规模数据集的分布式计算任务。它通过将处理任务分配到数据所在位置来提高效率,被广泛应用于Yahoo!、Facebook等公司的海量数据处理中。本文介绍了Hadoop的主要组成部分,如HDFS、MapReduce等,并列举了一些基于Hadoop的应用项目。

ApacheHadoop 项目开发的开源软件提供了可靠、可伸缩、分布式的计算。它是Google类似技术的开源版本。使用Hadoop的公司有Yahoo!, Facebook, Twitter, IBM等。

为什么要开发这样的系统呢?“When data exists in this quantity (terabit/day or petabit/day), one of the processing limitations is that it takes a significant amount of time to move the data. Apache Hadoop has emerged to address these concerns with its unique approach of moving the work to the data and not the other way around.” 简单翻译就是,当数据量非常庞大的时候,移动数据时间也非常庞大。为了处理这个挑战,Hadoop采用将数据处理工作移动到数据处而不是反向移动的方式。

Hadoop 包括如下的子项目:

  • Hadoop Common : 项目共用软件包
  • Chukwa : 数据收集系统以管理大型分布式系统
  • HBase : 可伸缩、分布式、结构化数据库
  • HDFS : 分布式文件系统
  • Hive : 数据仓库以提供数据整合以及ad hoc查询
  • MapReduce : 分布式大型数据处理软件框架
  • Pig : 数据流语言以及平行化执行框架
  • ZooKeeper : 为分布式应用程序提供高性能协调服务

Hadoop的工作原理可以用下面的图简单描述:Hadoop

还有很多基于Hadoop开发的项目:

如果你想进一步了解Hadoop,《Hadoop权威指南(中文版)》将是你第一选择了,它是Hadoop的开发者写的,所以相当的权威性。Hadoop

### 回答1: Apache Hadoop项目是一个开源的分布式计算和存储系统。它依靠Hadoop分布式文件系统(HDFS)和MapReduce计算模型来处理海量数据。 Hadoop的源码是使用Java语言编写的,完全开源并提供了详细的文档。源码可以从官方网站或代码托管平台(如GitHub)上获取。 Hadoop源码包括了HDFS和MapReduce这两个重要的组件。HDFS负责存储数据,将数据分散到Hadoop集群的各个节点上进行并行处理。MapReduce则是用于处理数据的计算模型,它将数据分为不同的块并将每个块分配给不同的节点进行并行计算。 源码中的Hadoop框架提供了许多功能,如数据复制、故障容错和分布式计算等。Hadoop使用Master/Slave架构,其中Master节点负责管理集群的运行,而Slave节点负责执行实际的任务。 Hadoop的源码中还包括了其他一些组件,如YARN(Yet Another Resource Negotiator)和Hive。YARN是Hadoop的资源调度器,负责对集群中的资源进行管理和分配。Hive是一个基于Hadoop的数据仓库工具,可以通过类似于SQL的查询语句来操作和分析存储在Hadoop集群中的数据。 通过阅读Hadoop源码,可以深入了解其内部机制和实现细节。了解源码有助于开发者更好地理解Hadoop的工作原理,并对其进行个性化的配置和优化。在源码的基础上,开发者还可以扩展Hadoop,以满足特定的需求或应用场景。 总之,Hadoop的源码是开源的,使用Java编写,并提供了丰富的功能和灵活性。通过深入研究源码,开发者可以更好地理解和使用Hadoop,进而构建强大的分布式计算和存储系统。 ### 回答2: Apache Hadoop是一个开源的分布式计算框架,它允许将大规模的数据集分布式处理和存储在集群中。Hadoop由两个核心组件组成,分别是Hadoop分布式文件系统(HDFS)和Hadoop MapReduce。 Hadoop分布式文件系统(HDFS)是一个高度可靠的分布式文件系统,它设计用于存储大规模数据集,并且能够在集群中提供高吞吐量的数据访问。HDFS的源码实现了数据块的分布、复制和恢复等功能,它的核心组件包括块管理器,名称节点和数据节点。名称节点负责维护文件系统的元数据信息,数据节点负责存储和管理实际的数据块。Hadoop源码中包含了HDFS的各个模块的实现,如文件系统操作、块管理、元数据管理等。 Hadoop MapReduce是一种用于处理大规模数据集的编程模型,它将任务分成多个小任务,并在集群中并行执行。MapReduce负责将输入数据划分为多个小数据块,并将这些数据块分配给不同的计算节点进行处理。Hadoop的源码中包含了MapReduce框架的实现,包括任务调度、任务划分、数据传输、结果汇总等模块。 除了上述核心组件,Hadoop还包含了许多其他模块,如YARN(资源管理器)、HBase(分布式数据库)、ZooKeeper(分布式协调服务)等。Hadoop的源码不仅包含了这些组件的实现细节,还包括了很多周边工具和库的源码。 Hadoop的源码是以Java编写的,使用了许多设计模式和优化技巧,具有高度可扩展性和灵活性。它的开源性使得开发者可以自由地查看和修改源码,定制化自己的解决方案。在开发、学习和部署Hadoop时,掌握其源码对于理解内部机制和解决问题非常有帮助。 ### 回答3: Apache Hadoop项目是一个开源软件框架,用于处理大规模数据集的分布式计算。它由Apache软件基金会开发并发布,并成为大数据领域最常用的工具之一。 Hadoop的源码是公开的,可以通过Apache官方网站获取。源码包含了Hadoop的核心组件,包括Hadoop Common、Hadoop HDFS、Hadoop YARN和Hadoop MapReduce等。 Hadoop Common是Hadoop的通用库,提供了许多用于处理分布式系统的基本功能,例如I/O操作、网络通信和安全性等。它包含了许多与系统操作相关的模块,如文件系统、认证和权限管理等。通过研究Hadoop Common的源码,我们可以了解Hadoop框架的基本架构和设计理念。 Hadoop HDFS是Hadoop的分布式文件系统,负责存储和管理数据。它的源码包含了文件系统的核心组件,如块管理器、命名空间管理和数据复制等。通过研究Hadoop HDFS的源码,我们可以了解大规模数据存储和处理的工作原理。 Hadoop YARN是Hadoop的资源管理器,用于管理和分配集群中的计算资源。它的源码包含了资源管理器和应用程序管理器等核心模块。通过研究Hadoop YARN的源码,我们可以了解如何优化集群资源的利用和处理多用户的并发请求。 Hadoop MapReduce是Hadoop分布式计算框架,用于处理大规模数据的并行计算。它的源码包含了Map任务和Reduce任务等核心组件,以及分布式任务调度和数据通信等模块。通过研究Hadoop MapReduce的源码,我们可以了解如何编写和调度分布式计算任务。 总而言之,研究Apache Hadoop项目的源码,可以帮助我们深入理解分布式计算及大数据处理的原理和实现方式。同时,了解源码也有助于我们在实际应用中进行定制和调优,以满足特定的需求和性能要求。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值