import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix
from mlxtend.frequent_patterns import apriori, association_rules
import warnings
warnings.filterwarnings('ignore')
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用于显示中文
plt.rcParams['axes.unicode_minus'] = False
# ====================== 加载数据 ======================
file_path = 'final_train_ready.csv'
data = pd.read_csv(file_path)
# 删除无关列
drop_cols = ['ID', 'Delivery_person_ID', 'Order_Date', 'Time_Orderd', 'Time_Order_picked']
data.drop(columns=[col for col in drop_cols if col in data.columns], inplace=True)
# ======== 清洗 Time_taken(min) 字段 ========
data['Time_taken(min)'] = (
data['Time_taken(min)']
.astype(str)
.str.replace(r'[^\d.]', '', regex=True)
.replace('', np.nan)
.astype(float)
)
print(f" 数据加载完成:{data.shape[0]} 行 × {data.shape[1]} 列\n")
# ================== 关联规则挖掘==================
print(" 开始:关联规则挖掘(购物篮分析思想)\n")
# 选择分类变量 + 时间段作为维度
cat_vars = ['Weatherconditions', 'Road_traffic_density', 'Type_of_order', 'Type_of_vehicle', 'Festival', 'City', 'Order_Period']
subset_data = data[cat_vars].copy()
# 将所有字段转为字符串类别
for col in subset_data.columns:
subset_data[col] = subset_data[col].astype(str)
# One-Hot 编码(独热编码)
oht = pd.get_dummies(subset_data)
oht = oht.groupby(level=0, axis=1).sum() # 合并重复列
# 应用 Apriori 获取频繁项集
frequent_items = apriori(oht, min_support=0.1, use_colnames=True)
# 生成关联规则
rules = association_rules(frequent_items, metric="lift", min_threshold=1.0)
rules = rules.sort_values(['lift', 'confidence'], ascending=False)
# 筛选高置信度规则
strong_rules = rules[rules['confidence'] >= 0.5]
print(f" 发现 {len(strong_rules)} 条强关联规则(confidence ≥ 0.5):\n")
for idx, row in strong_rules.head(10).iterrows(): # 可调整显示条数
# 展开前件(antecedents)
antecedent_terms = [f"{item}" for item in row['antecedents']]
antecedent_str = " 且 ".join(antecedent_terms)
# 展开后件(consequents)
consequent_terms = [f"{item}" for item in row['consequents']]
consequent_str = " 且 ".join(consequent_terms)
# 格式化输出
print(f" 若 {antecedent_str} → 则 {consequent_str} "
f"(支持度={row['support']:.3f}, 置信度={row['confidence']:.3f}, 提升度={row['lift']:.3f})")
# ================== 分类模型构建 ==================
print(" 开始:分类模型构建 —— 预测配送时间等级\n")
# 目标变量:将连续时间划分为三类(短、中、长)
time_labels = [0, 1, 2] # 0=短, 1=中, 2=长
data['Time_Category'] = pd.qcut(data['Time_taken(min)'], q=3, labels=time_labels)
# 特征工程:编码分类变量
le = LabelEncoder()
X_cat = data.select_dtypes(include=['object']).apply(lambda x: le.fit_transform(x.astype(str)))
X_num = data.select_dtypes(include=[np.number]).drop(columns=['Time_taken(min)', 'Time_Category'], errors='ignore')
X = pd.concat([X_cat, X_num], axis=1)
y = data['Time_Category']
# 划分训练/测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)
# 训练随机森林分类器
clf = RandomForestClassifier(n_estimators=100, random_state=42, class_weight='balanced')
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
# 输出评估结果
print(" 分类性能报告:")
print(classification_report(y_test, y_pred, target_names=['Short', 'Medium', 'Long']))
# 可视化混淆矩阵
# plt.figure(figsize=(6, 5))
# cm = confusion_matrix(y_test, y_pred)
# sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['Short','Medium','Long'], yticklabels=['Short','Medium','Long'])
# plt.title('Confusion Matrix - Delivery Time Classification')
# plt.xlabel('Predicted')
# plt.ylabel('Actual')
# plt.tight_layout()
# plt.show()
print("-" * 60)
# ================== 聚类分析 ==================
print("📊 开始:聚类分析 —— 订单行为分群\n")
# === 提取用于聚类的特征 ===
cluster_features = [
'Delivery_person_Ratings',
'Delivery_Distance',
'multiple_deliveries',
'Time_taken(min)',
'Order_Hour'
]
X_clust = data[cluster_features].copy()
# === 关键步骤1:逐列强制转为数值类型(字符串→float)===
for col in X_clust.columns:
if col == 'multiple_deliveries': # 特殊处理
pattern = r'[^\d.]'
X_clust[col] = (
X_clust[col].astype(str)
.str.replace(pattern, '', regex=True)
.replace('', np.nan)
.astype(float)
)
else:
X_clust[col] = pd.to_numeric(X_clust[col], errors='coerce')
# === 检查转换结果 ===
print("\n🔍 各列数据类型(转换后):")
print(X_clust.dtypes)
print("\n🧩 缺失值统计(转换后):")
print(X_clust.isnull().sum())
# === 关键步骤2:安全填充均值 ===
numeric_columns = X_clust.select_dtypes(include=[np.number]).columns.tolist()
X_clust_filled = X_clust[numeric_columns].copy()
for col in numeric_columns:
if X_clust_filled[col].isnull().any():
mean_val = X_clust_filled[col].mean()
X_clust_filled[col].fillna(mean_val, inplace=True)
# === 再次检查是否还有 NaN ===
assert not X_clust_filled.isnull().any().any(), "仍有 NaN,请检查!"
print("✅ 数据清洗完成,共 {} 个样本".format(len(X_clust_filled)))
# === 标准化 ===
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X_clust_filled)
X_scaled_df = pd.DataFrame(X_scaled, columns=numeric_columns)
# === 肘部法找最优 k ===
inertias = []
k_range = range(1, 10)
for k in k_range:
kmeans = KMeans(n_clusters=k, random_state=42, n_init=10)
kmeans.fit(X_scaled)
inertias.append(kmeans.inertia_)
# 可视化肘部图(可选开启)
# plt.figure(figsize=(8, 5))
# plt.plot(k_range, inertias, 'bo-', linewidth=2, markersize=6)
# plt.axvline(x=3, color='r', linestyle='--', label='k=3')
# plt.title('Elbow Method for Optimal k')
# plt.xlabel('Number of Clusters (k)')
# plt.ylabel('Inertia')
# plt.legend()
# plt.grid(True)
# plt.tight_layout()
# plt.show()
# === K-Means 聚类(k=3)===
optimal_k = 3
kmeans_final = KMeans(n_clusters=optimal_k, random_state=42, n_init=10)
clusters = kmeans_final.fit_predict(X_scaled)
# === 写回原数据 ===
data['Cluster'] = np.nan
data.loc[X_clust_filled.index, 'Cluster'] = clusters
data['Cluster'] = data['Cluster'].astype('int')
# === 输出结果 ===
print(f"🎯 聚类完成!共分为 {optimal_k} 类:")
print(data['Cluster'].value_counts().sort_index())
# print(data[['multiple_deliveries', 'Delivery_Distance']].dtypes)
#
# data['multiple_deliveries'] = pd.to_numeric(data['multiple_deliveries'], errors='coerce')
# data['Delivery_Distance'] = pd.to_numeric(data['Delivery_Distance'], errors='coerce')
# data['Time_taken(min)'] = pd.to_numeric(data['Time_taken(min)'], errors='coerce')
# data['Order_Hour'] = pd.to_numeric(data['Order_Hour'], errors='coerce')
#
# for col in numeric_columns:
# data[col].fillna(data[col].mean(), inplace=True)
# print(data[numeric_columns].dtypes)
#
# print(data[['multiple_deliveries', 'Delivery_Distance']].dtypes)
# 各簇特征均值
cluster_profile = data.groupby('Cluster')[cluster_features].mean()
print("\n📌 各类特征均值对比:")
print(cluster_profile.round(2))
# === 可视化聚类结果 ===
# plt.figure(figsize=(8, 6))
# sns.scatterplot(
# data=data,
# x='Delivery_Distance',
# y='Time_taken(min)',
# hue='Cluster',
# palette='Set1',
# alpha=0.7
# )
# plt.title('K-Means Clustering: Delivery Distance vs Time Taken')
# plt.xlabel('配送距离 (km)')
# plt.ylabel('配送时间 (分钟)')
# plt.legend(title='簇编号')
# plt.grid(True)
# plt.tight_layout()
# plt.show()
print("\n🎉 聚类分析成功完成!")
C:\Users\32773\.conda\envs\mining\python.exe "C:\Users\32773\Desktop\外卖消费行为处理好的数据1\外卖消费行为处理好的数据\data mining.py"
数据加载完成:45593 行 × 18 列
开始:关联规则挖掘(购物篮分析思想)
发现 212 条强关联规则(confidence ≥ 0.5):
若 Order_Period_下午茶 → 则 Road_traffic_density_Medium 且 Festival_No (支持度=0.125, 置信度=0.857, 提升度=3.626)
若 Road_traffic_density_Medium 且 Festival_No → 则 Order_Period_下午茶 (支持度=0.125, 置信度=0.529, 提升度=3.626)
若 Order_Period_下午茶 且 Festival_No → 则 Road_traffic_density_Medium (支持度=0.125, 置信度=0.869, 提升度=3.620)
若 Road_traffic_density_Medium → 则 Order_Period_下午茶 且 Festival_No (支持度=0.125, 置信度=0.521, 提升度=3.620)
若 Order_Period_下午茶 → 则 Road_traffic_density_Medium (支持度=0.127, 置信度=0.868, 提升度=3.616)
若 Road_traffic_density_Medium → 则 Order_Period_下午茶 (支持度=0.127, 置信度=0.527, 提升度=3.616)
若 Order_Period_早餐 → 则 Festival_No 且 Road_traffic_density_Low (支持度=0.125, 置信度=0.990, 提升度=2.950)
若 Order_Period_早餐 → 则 Road_traffic_density_Low (支持度=0.126, 置信度=1.000, 提升度=2.946)
若 Order_Period_早餐 且 Festival_No → 则 Road_traffic_density_Low (支持度=0.125, 置信度=1.000, 提升度=2.946)
若 Road_traffic_density_Jam 且 Type_of_vehicle_motorcycle → 则 City_Metropolitian 且 Order_Period_晚餐 (支持度=0.143, 置信度=0.791, 提升度=1.610)
开始:分类模型构建 —— 预测配送时间等级
分类性能报告:
precision recall f1-score support
Short 0.79 0.76 0.77 3150
Medium 0.63 0.71 0.67 3004
Long 0.90 0.82 0.85 2965
accuracy 0.76 9119
macro avg 0.77 0.76 0.77 9119
weighted avg 0.77 0.76 0.77 9119
------------------------------------------------------------
📊 开始:聚类分析 —— 订单行为分群
🔍 各列数据类型(转换后):
Delivery_person_Ratings float64
Delivery_Distance float64
multiple_deliveries float64
Time_taken(min) float64
Order_Hour int64
dtype: object
🧩 缺失值统计(转换后):
Delivery_person_Ratings 1908
Delivery_Distance 0
multiple_deliveries 993
Time_taken(min) 0
Order_Hour 0
dtype: int64
✅ 数据清洗完成,共 45593 个样本
🎯 聚类完成!共分为 3 类:
Cluster
0 12727
1 32704
2 162
Name: count, dtype: int64
Traceback (most recent call last):
File "C:\Users\32773\.conda\envs\mining\Lib\site-packages\pandas\core\groupby\groupby.py", line 1944, in _agg_py_fallback
res_values = self._grouper.agg_series(ser, alt, preserve_dtype=True)
File "C:\Users\32773\.conda\envs\mining\Lib\site-packages\pandas\core\groupby\ops.py", line 873, in agg_series
result = self._aggregate_series_pure_python(obj, func)
File "C:\Users\32773\.conda\envs\mining\Lib\site-packages\pandas\core\groupby\ops.py", line 894, in _aggregate_series_pure_python
res = func(group)
File "C:\Users\32773\.conda\envs\mining\Lib\site-packages\pandas\core\groupby\groupby.py", line 2461, in <lambda>
alt=lambda x: Series(x, copy=False).mean(numeric_only=numeric_only),
~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\32773\.conda\envs\mining\Lib\site-packages\pandas\core\series.py", line 6570, in mean
return NDFrame.mean(self, axis, skipna, numeric_only, **kwargs)
~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\32773\.conda\envs\mining\Lib\site-packages\pandas\core\generic.py", line 12485, in mean
return self._stat_function(
~~~~~~~~~~~~~~~~~~~^
"mean", nanops.nanmean, axis, skipna, numeric_only, **kwargs
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
)
^
File "C:\Users\32773\.conda\envs\mining\Lib\site-packages\pandas\core\generic.py", line 12442, in _stat_function
return self._reduce(
~~~~~~~~~~~~^
func, name=name, axis=axis, skipna=skipna, numeric_only=numeric_only
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
)
^
File "C:\Users\32773\.conda\envs\mining\Lib\site-packages\pandas\core\series.py", line 6478, in _reduce
return op(delegate, skipna=skipna, **kwds)
File "C:\Users\32773\.conda\envs\mining\Lib\site-packages\pandas\core\nanops.py", line 147, in f
result = alt(values, axis=axis, skipna=skipna, **kwds)
File "C:\Users\32773\.conda\envs\mining\Lib\site-packages\pandas\core\nanops.py", line 404, in new_func
result = func(values, axis=axis, skipna=skipna, mask=mask, **kwargs)
File "C:\Users\32773\.conda\envs\mining\Lib\site-packages\pandas\core\nanops.py", line 720, in nanmean
the_sum = _ensure_numeric(the_sum)
File "C:\Users\32773\.conda\envs\mining\Lib\site-packages\pandas\core\nanops.py", line 1701, in _ensure_numeric
raise TypeError(f"Could not convert string '{x}' to numeric")
TypeError: Could not convert string '4.54.74.64.84.24.744.24.94.14.344.344.13.54.64.3NaN 4.74.84.24.44.64.54.14.64.74.44.64.24.44.64.34.23.84.94.24.74.94.64.24.13.94.644.44.14.84.34.74.6NaN 4.94.73.94.74.344.14.643.94.84.54.14.44.64.74.84.44.74.644.84NaN 4.44.24.24.94.44.94.14.34.54.94.74.14.44.53.84.44NaN 3.94.34.64.74.54.44.44.24.53.94.6NaN 44.54.14.13.73.8444.84.84.34.24.22.64.34.94444.94.84.64.44.14.44.74.954.94.84.24.44.34.743.54.64.73.74.64.554.74.24.44.94.74.23.84.14.34.153.544.54.14.14.54.14.34.84.74.84.32.53.63.94.83.944.34.13.53.64.44.64.14.34.24.24.94.454.24.84.73.94.844.74.43.83.54.24.444.84.64.94.44.84.24.94.44.94.14.64.154.34.44.14.94.14.244.94.44.54.34.64.54.93.94.154.24.84.254.73.844.73.84.44.14.13.64.74.9NaN 4.14.24.34.14.14.24.454.84.94.34.42.54.63.74.74.14.44.34.54.34.254.34.74.33.53.84.64.64.44.94.84.84.94.13.84.54.64.94.34.64.24.64.64.84.64.15NaN 44.54.34.64.244.14.6444.64.24.44.64.14.34.8NaN 4.74.44.544.84.44.34.84.14.54.54.554.94.14.14.34.64.34.9NaN 4.84.544.2444.54.74.94.74.24.3NaN 4.14.84.34.84.14.454.544.33.74.34.94.44.94.84.64.72.54.64.64.64.64.14.14.644.64.74.62.644.944.24NaN 4.544.644.24.544.13.144.54.34.44.1NaN 3.54.84.94.74.14.34.74.94.3NaN 4.44.94.93.84.94.64.64.84.244.24.84.72.7NaN 4.14.94.44.84.14.244.44.54.64.64.34.73.54.454.44.13.54.14.84.54.13.84.73.754.84.64.64NaN 4.23.64.64.84.44.24.54.14.54.83.84.44.44.24.64.34.34.44.74.34.33.53.54.74.854.144.94.54.84.34.64.14.83.544.84.44.44.93.63.53.84.34.94.14.24.64.84.64.14.554.84.34.73.94.744.54.64.84.84.54.64.74.33.9NaN 4.144.6NaN 4.33.94.34.33.73.844.74.44.444.94.14.14.2NaN 4.84.34.353.64.343.84.64.54.244.4NaN 4.54.34.14.8NaN 4.4NaN NaN 4.22.64.44.44.13.63.54.14.94.14.64.94.74.74.74.74.64.44.344.64.14.244.14.64.54.54.24.94.54.64.44.64.33.84.64.14.44.94.64.144.74.33.64.54.24.44.1NaN 4.14.74.64.94.74.24.643.14.44.14.44.84.84.94.64.44.94.34.64.44.84.64.24.24.14.54.24.644.54NaN 4.24.94.74.34.64.14.54.94.44.43.8NaN 144.44.44.94.33.54.24.24.94.44.954.54.84.84.34.44.44.84.14.44.64.24.944.24.74.44.43.74.24.244.44.83.84.24.74.24.74.2544.64.24.13.14.24.34.14.143.54.64.44.54.64.244.84.24.64.54.65NaN 4.14.64.44.44.14.93.84.44.744.14.14.1NaN 4.14.63.544.12.5NaN 4.14.24.24.13.94.54.84.44.34.24.64.54.73.74.54.54.64.94.24.74.54.23.94.4444.7NaN 4.44.94.94.64.44.44.34.32.54.34.44.44.44.544.34.44.84.44.154.64.94.24.13.54.714.64.54.14.14.24.744.34.64.814.63.64.344.84.4543.54.14.34.2444.83.54.34.44.74.14.44.64.34.84.44.454.24.64.44.24.24.42.74.74.8NaN 4.74.14.5NaN 4.64.44.354.64.34.14.74.643.94.24.63.944.94.44.74.13.54.244.64.13.64.34.444.144.93.74.44.34.24.14.54.254.13.84.34.43.74.6NaN 4.64.23.54.444.64.44.74.64.14.84.34.24.64.74.34.63.64.74.64.33.5NaN 554.14.24.64.74.34.344.3NaN 44.444.74NaN 4.64.23.1454.64.94.24.44.744.64.84.44.14.64.14.73.54.44.44.33.53.23.34.6NaN 4.64.654.22.74.44.64.73.54.14.844.34.24.94.444.54.64.14.54.24.33.8444.33.64.6444.74.14.14.64.64.74.94.94.54.14.44.63.14.64.74.93.84.644.44.34.43.73.94.53.84.14.24.64.1NaN 4.64.54.34.64.54.2NaN 3.654.24.34.64.84.64.54.454.44.13.5NaN 4.23.84.54.54.94.6454.54.7NaN 4.2NaN 4.44.44.64.24.34.34.54.54.44.24.64.64.24.24.64.74.94.74.53.54.13.74.3454.44.14.64.84.64.74.64.54.44.7NaN 4.34.74.24.54.54.72.63.14.64.94.14.83.64.24.33.74.34.34.54.44.844.52.64.344.33.54.64.154.14NaN 3.64.34.34.64.54.64.14.14.14.63.54.54.94.14.654.74.84.44.34.24.24.24.34.84.244.34.44.3NaN 4.14.143.94.54.74.74.83.84.14.44.454.74.64.34.444.44.1444.14.94.54.44.74.64.64.74.8NaN 4.64.444.54.84.64.2454.64.34.24.43.64.44.24.34.94.94.94.6NaN 4.34.74.64.2NaN 4.14.94.84.73.74.943.54.454.94.44.64.14.44.64.94.84.34.34.64.44.44NaN 4.84.34.74.94.34.74.1NaN 4.14.844.64.24.64.944.74NaN 4.74.84.23.74.84.44.44.84.64.74.14.33.94.34.64.73.73.44.74.84.64.54.14.14.74.14.144.64.8NaN 4.24.54.54.14.34.94.24.64.24.7NaN 4.143.63.84.24.654.34.14.43.84.44.84.53.74.64.24.84.74.64.64.84.94.94.34.14.84.24.14.154.14.74.84.454.14.44.24.94.24.34.644.44.43.94.54.34.13.44.2454.44.14.44.64.24.34.23.54.43.64.14.14.44.74.44.74.34.2NaN 4.74.63.74.34.14.74.34.14.24.64.84.74.34.64.54.74.24.24.94.74.14.74.44.844.24.23.73.24.14.44.14.64.44.63.74.74.44.84.94.33.84.44.14.354.744.33.7444.14.354.34.94.82.74.14.44.84.544.44.34.14.33.64.44.94.84.4NaN 4.94.844.84.14.54.54.64.43.73.74.14.12.84.944.24.14.44.94.33.54.844.54.94.34.444.54.94.9NaN 4.14.33.53.84.13.73.84.14.24.74.14.34.84.74.443.54.64.34.443.54.14.54.24.54.144.74.24.84.34.44.444.14.64.54.14.34.24.544.84.94.7NaN 4.23.8NaN 3.34.24.14.74.24.74.54.14.74.34.34.64.64.53.554.854.94.64.34.64.14.34.14.44.3NaN 54.54.44.54.44.14.14.64.344.14.64.24.44.14.74.24.144.94.13.84.84.94.54.24.74.13.94.42.84.1NaN 3.744.23.24.14.23.74.94.2444.943.94.44.84.24.63.44.544.34.344.84.14.13.94.843.54.24.344.54.254.44.23.54.54.64.84.214.14444.14.74.34.84.64.24.94.254.34.83.9NaN 4.84.14.74.84.54.34.84.74.93.344.74.74.44.74.24.43.94.14.14.54.24.24.24.54.94.64.14.94.74.64.43.74.44.13.34.44.34.14.442.94NaN 3.54.13.83.64.64.74.14.14.14.94.2NaN 4.34.84.24.34.34.74.444.44.24.344.34.44.74.344.6NaN 4.24.24.54.2NaN 4.64.74.74.554.54.654.24.554.13.5544.74.43.84.44.63.84.854.944.64.94.83.84.84.6NaN 4.24.64.44.24.64.94.544.74.154.94.84.44.444.44.54.53.54.74.64.244.44.53.74.643.54.34.84.34.34.84.544.554.454.24.24.24.84.94.84.64.3NaN 44.64.94.64.54.74.44.84.54.14.34.14.54.24.74.74.64.34.84.6NaN 54.44.74.64.64.13.94.64.24.63.84.94.94.32.94.353.74.154.53.84.34.34.9NaN 4.94.54.24.24.44.84.1NaN 4.24.84.14.54.1443.954.14.63.5444.14.6NaN 4.34.14.54.24.74.24.94.94NaN 44.74.44.84.74.64.54.14.34.54.84.34.64.24.64.6NaN 4.24.74.24.74.34.34.74.94.444.14.444.54.54.84.14.84.14.34.23.83.64.944.7NaN 4.94.74.54.84.24.83.8NaN 3.83.64.24.34.144.44.24.844.744.84.54.34.54.7NaN 44.44.33.64.34.74.53.84.14.94.44.84.2NaN 4.34.14.24.94.94.6NaN 4.84.54.74.6NaN 4.84.644.43.64.944.44.14.44.64.23.54.64.944.83.34.14.64.64.74.44.444.54.34.64.744.24.14.54.63.944.24.94.24.64.34.64.44.3NaN 4.84.3444.94.74.74.24.43.64.34.34.14.74.44.64.74.44.64.74.44.43.83.84.54.64.63.64.94.14.24.5NaN 44.14.24.64.24.14.944.64.34.24.94.54.34.14.14.24.23.94.84.74.24.94.44.94.244.14.354.14.64.34.943.74.44.54.13.54NaN 4.84.2NaN 4.44.63.244.94.64.5NaN 4.93.744.24.84.73.54.94.64.94.94.64.44.64.644.14.64.14.64.34.24.84.44.74.844.23.8NaN 4.14.8NaN 4.24.83.74.14.24.74.14.44.44.84.32.94.34.144.44.83.44.24.34.74.34.14.24.44.54.84.34.54.8NaN 4.34.24.743.64.34.64.14.84.14.554.74.14.84.94.14.14.54.64.14.74.74.14.34.44.74.44.83.53.64.64.54.14.34.24.54.44.34.34.33.644.22.5NaN 4.54.74.44.64.24.94.14.54.744.64.14.24.14.14.14.14.64.9NaN 44.54.84.64.44.84.44.14.354.24.2544.74.74.23.54.14.14.53.54.74.44.34.64.73.74.94.64.14.2NaN 4.444.14.64.24.23.74.14.64.94.74.44.23.43.64.34.44.24.43.84.94.34.84.74.14.94NaN 4.44.94.74.54.84.74.24.14.13.54.54.73.23.64.44.54.24.54.34.74.14.654.544.34.14.24.34.24.14.13.64.24.24.44.64.14.44.14.44.54.3NaN NaN 4.74.64.744.344.44.84.84.34.54.74.44.14.254.754.14.84.154.54.943.54.54.13.64.64.444.64.34.34.73.64.44.74.14.24.144.14.14.244.24.64.64.44.84.454.34.94.34.44.44.23.54.354.9NaN NaN 4.64.54.24.74.94.64.23.9NaN 4.344.94.74.24.94.64.53.64.134.74.64.24.24.64.34.13.94.74.53.72.64.8454.34.64.34.54.54.94.24.24.64.23.94.14.454.44.64.654.83.84.44.64.54.23.94.64.44.444.6NaN 4.44.64.84.14.7NaN 4.844.644.44.84.34.74.24.84.84.74.24.24.84.24.44.13.74.74.74.354.84.73.754.344.44.64.14.24.444.34.64.74.53.84.24.64.54.13.94.84.34.4NaN 4.44.23.53.54.34.14.24.44.444.94.34.94.444.84.54.64.84.34.5NaN NaN 4.64.54.14.94.244.84.444.64.213.654.54.74.54.34.34.8544.74.3NaN 4.1NaN 54.24.63.74.64.74.43.9NaN 4.23.54.74.34.24.54.64.94.954.44.34.14.94.83.54.74.74.74.64.94.644.14.943.744.44.24.14.64.24.64.94.44.744.54.63.14.244.34.83.5NaN 4.44.24.12.73.13.34.94.74.74.44.94.54.44.44.34.14.14.24.44.14.34.44.73.14.43.74.34.8NaN 4.342.73.84.64.13.63.64.44.34.14.14.14.74.6NaN 4.3NaN 4.24.54.54.54.34.8NaN 3.8544.74.74.24.24.24.64.44.14.64.33.64.944.23.64.744.14.94.64.54.443.83.14.8NaN 4.14.14.64.2NaN 4.94.64.14.43.94.54.1NaN 3.63.74.84.63.74.34.54.5453.54.74.64.54NaN 44.144.14.74.63.94.6454.64.1NaN 3.64.53.54.74.73.74.64.64.14.14.44.84.443.24.53.54.24.54.24.53.84.64.74.23.24.34.34.43.94.44.74.24.94.14.13.74.54.83.64.34.24.144.24.74.64.54.444.34.64.44.244.44.7444.63.64.24.44.24.24.34.84.43.74.64.54.154.14.74.34.74.24.34.84.24.24.54.34.14.14.64.34.94.44.74.64.74.24.54.93.54.24.24.82.5NaN NaN 4.24.44.53.64.13.24.74.14.7NaN 4.34.24.354.34.84.654.44.74.74.14.83.93.543.64.94.144.44.14.74.84.64.64.84.84.443.74.644.14.44.74.84.94.24.84.14.2NaN 4.44.9NaN 4.14.74.84.14.24.14.6544.24.44.34.94.44.94.64.64.84.4554.94.64.44.33.64.34.24.64.14.15544.84.34.64.84.5NaN 4.74.64.34.84.34.34.24.43.44.74.34.74.24.74.64.34.5444.34.44.54.64.34.43.94.64.544.444.54.24.24.14.94.84.74.6NaN 4.84.94.74.14.14.74.43.14.84.73.54.24.24.44.63.64.13.644.7NaN NaN 4.34.64.644.64.62.64.74.24.3NaN 4.94.754.44.74.33.74.54.74.13.64.54.14.34.64.44.34.94NaN 4.54.14.94.74.94.93.14.44.64.84.34.34.24.24.44.24.24.154.94.64.74.24.63.64.54.24.314.64.54.544.84.153.84.64.13.93.94.24.6NaN 4.34.34.54.34.24.44.14.84.44.144.14.54.63.74.84.44.24.14.24.144.24.74.24.34.83.54.34.54.64.94.1NaN 4.94.72.74.44.24.24.44.94.34.24.63.54.13.64.34.644.34.244.34.64.84.84.44.1NaN 4.74.744.64.94.73.43.554.14.254.84.64.84.74.353.94.32.93.5NaN 4.64.64.64.24.63.8NaN 4.34.5NaN 4.64.34.74.3NaN 4.84.24.44.84.44.14.84.44.64.43.94.643.63.23.94.34.94.44.5NaN 4.9NaN 4.34.24.44.74.74.64.64.14.554.64.64.24.44.34.24.844.23.95NaN 4.83.94.24.44.83.65544.64.14.24.64.44.54.14.14.84.84.954.644.84.7554.64.14.553.74.44.84.33.74.74.73.64.64.95NaN 4.64.64.44.544.954.93.74.63.84.14.14.44.14.444.14.24.34.454.94.34.53.54.14.64.144.34.34.74.64.74.23.84.84.6NaN 4.14.84.13.54.14.14.354.13.54.43.54.14.63.54.24.43.34.94.74.64.54.64.14.254.64.84.14.24.64.83.24.34.83.74.73.94.44.54.94.94.74.33.84.64.14.454.2554.84.14.14.1NaN 4.84.94.44.243.94.94.84.244.74.84.14.14.54.74.14.14.84.64.24.44.84.13.952.74.83.5415NaN 4.14.92.94.74.84.84.144.64.2NaN 4.14.64.14.24.24.14.94.244.24.54.34.43.24.44.13.53.44.74.84.54.74.5NaN 54.34.24.24.74NaN 4.744.54.544.44.64.34.4NaN 4.54.84.6NaN 3.74.24.54.24.34.84.754.64.64.53.64.64.14.74.44.64.14.34.14.2NaN 4.74.64.24.14.84.33.74.74.354.24.53.94.64.9543.8NaN 4.6544.24.34.64NaN 4.13.544.24.744.6NaN 4.6NaN 54.74.74.94.33.84.34.54.33.73.64.34.94.63.44.84.74.143.82.54.24.34.54.44.74.34.44.84.84.83.54.54.84.44.84.14.64.44.54.34.443.7NaN 4.64.64.44.34.24.444.44.44.24.44.43.854.44.84.24.244.54.2NaN 4.94.84.64.84.64.94.74.94.44.44.24.1NaN 43.64.44.64.24.64.14.844.23.844.24.54.54.244.64.64.84.84.74.84.644.34.54.2NaN 4.14.44.14.54.84.3NaN 4.64.14.64.14.254.84.24.54.32.84.44.154.34.82.644.14.34.14.64NaN 5NaN 4.44.143.74.144.33.54NaN 43.64.53.93.74.14.644.94.94.34.54.644.34.344.64.94.24.44.34.2NaN 4.24.33.74.34.44.54.843.744.74.33.93.94.14.84.84.94.44.14.34.74.144.54.14.4NaN 4.44.24.14.1544.83.844.64.44.4NaN 4.354.43.64.34.94.74.74.83.64.654.34.14.64.63.63.84.54.64.14.24.24.23.74.454.64.44.1NaN NaN 4.34.43.94.74.44.63.84.74.94.14.43.54.34.94.24.24.24.14.64.34.14.94.64.74.74.84.34.5NaN 4.34NaN 4.64.8NaN 4.84.74.43.64.63.84.23.43.84.24.64.14.44.644.44.74.14.14.34.74.83.854.954.84.653.54.14.34.24.64.24.34.554.14.44.84.24.444.14.54.64.34.34.24.94.94.14.844.64.74.2NaN 4.24.64.74.74.24.24.444.64.443.54.853.84.84.64.144.14.44.13.74.84.74.74.24.64.14.14.94.94.34.544.54.1NaN 54.14.64.84.83.64.64.44.14.24.34.74.74.14.24.6444.644.34.44.84.34.34.24.944.14.34.34.144.64.54.74.33.64.14.2NaN 3.74.94.74.24.64.1NaN 4.34.14.64.64.44.64.44.74.44.644.34.14.24.34.24.24.24.44.64.94.14.74.24.744.54.84.84.94.454.244.14.44.84.24.44.14.14.54.23.54.94.43.64.73.64.64.24.54.23.654.54.14.43.84.24.74.44.244.24.44.64.84.44.44.54.94.94.74.14.34.34.54.23.84.64.13.54.34.54.83.94.54.24.44.44.54.34.34.74.64.64.24.644.34.94.64.53.74.14.14.84.74.24.94.64.14.44.6544.34.244.74.63.544.64.93.74.64.74.64.44.24.83.7NaN 4.553.74.13.94.844.64.5544.14.74.24.24.63.54.43.54.8NaN 4.244.254.34544.24.34.24.24.34.14.34.34.74.94.84.64.74.3NaN 4.34.144.24.643.95NaN 4.74.13.44.34.64.944.63.93.754.14.34.54.34.144.64.1NaN 4.14.64.74.43.8444.24.44.444.74.444.3NaN 4.64.84.14.84.24.244.94.63.54.94.24.63.64.14.83.844.154.24.43.74.94.34.24.54.14.34.94.24.2454.64.34.54.84.24.74.74.3NaN 4.23.74.24.14.43.74.44.64.44.64.14.74.844.34.34.33.84.64.14.14.34.14.34.64.34.24.454.444.1444.43.74.24.44.34.7NaN 4.254.74.64.5144.14.44.34.6NaN 3.644.74.64.54.24.44.43.24.754.64.254.6NaN 4.24.4442.84.54.154.64.14.94.94.44.844.64.64.74.84.44.64.94.844.14.14.54.84.44.9NaN 44.44.24.14.244.24.84.94.254.54.64.74.34.34.944.14.34.24.54.6NaN 43.54.63.74.84.74.33.54.7444.14.954.544.24.63.64.64.644.73.64.63.9NaN 4.14.54.44.64.34.7444.3NaN 3.94.14.64.24.14.54.444.14.44.24.8NaN 4.44.14.34.84.64.94.14.74.9NaN 4.34.84.944.44.453.94.9NaN 3.94.24.14.34.64.14.84.74.63.84.44.74.14.63.64.24.74.24.14.14.73.84.14.24.34.154.44.73.754.14.34.74.64.34.94.44.44.64.954.64.44.34.74.34.64.154.614.14.64.64.24.24.94.54.53.14.84.63.74.94.44.54.93.64.43.64.14.74.24.3NaN 4.34.744.64.74.44.94.64.33.54.644.54.34.53.813.84.14.74.64.54.344.14.13.84.63.54.14.44.5NaN 4.84.74.13.93.64.74.64.44.44.74.44.44.53.84.14.43.544.54.53.83.24.44.34.144.44.94.14.24.14.64.64.24.24.74.743.53.754.14.24.64.33.14.64.8NaN 4.34.14.24.84.14.84.44.24.74.74.63.5NaN 4.34.44.83.84.33.444.24.94.74.84.74.44.84.3NaN 4.24.83.94.34.44.54.44.34.24.64.24.244.2NaN 4.54.914.34.94.74.74NaN 4.54.1444.54.2NaN 44.844.54.84.3NaN 4.34.34.74.34.34.33.84.54.44.444.14.74.94.24.24.74.24.653.64.44.14.63.94.143.53.94.84.444.74.23.74.62.74.644.353.74.54.24.34.44.33.7NaN 4.14.64.94.64.74.34.74.54.24.83.54.7NaN 4.64.94.44.644.4NaN 44.64.34.744.54.43.94.34.24.74.84.64.84.54.14.954.34.44NaN 4.54.34.24.64.244.24.94.24.64.24.64.64.84.743.84.24.84.14.84.74.33.93.84.644.4NaN 4.94.54.94.944.34.64.744.2NaN 4.54.63.84.44.444.44.44.24.13.64.24.24.44.14.54.14.14.954.454.74.34.64.34.13.54.94.64.644.14.34.1NaN 4.144.34.84.24.74.84.24.94.2NaN 4.44.74.24.44.44.84.14.644.54.854.84.74.14.14.24.34.53.84.844.64.144.344.54.34.6NaN 42.74.34.34.34.44.144.94.84.74.64.74.84.74.24.34.54.444.84444.44.84.73.24.24.244.24.44.74.94.84.84.14.44.74.24.7NaN 4.34.34.94.24.73.64.54.3NaN 4.53.94.94.34.1NaN 44.64.63.7554.44.24.53.83.654.344.34.64.84.1444.94.44.44.44.24.34.24.853.74.84.3NaN 54.94.44.14.24.34.34.3NaN 4.24.33.93.94.64.34.444.74.54.844.54.53.83.54.754.3NaN 4.63.64.34.344.44.63.74.44.14.14.844.14.43.14.644.34.24.73.94.64.14.84.74.14.83.94.64.54.644.244.84.14.34.34.34.54.24.44.34.34.23.54.34.94.44.24.34.94.94.94.54.54.24.64.14.554.44.24.84.34.444.44.4NaN NaN 4.744.4NaN 4.24.44.54.64.14.74.94.74.54.24.64.44.24.654.73.74.34.84.94.94.644NaN NaN 4.44.74.34.5NaN 4.35NaN 4.14.14.64.74.14.74.64.54.14.84.64.94.644.84.24.34.64.64.2NaN 4.144.43.34.14.64.24.94.14.44.24.154.14.94.234.14.24.54.64.33.5NaN 3.74.44.13.83.74.34.44.14.24.84.34.74.64.244.74.64.354.33.84.24.44.244.34.84.84.64.24.64.24.544.84.12.53.9NaN 4.254.44.24.1444.54.24.24.34.64.254.83.64.24.2NaN 553.74.94.24.34.14.34.14.6NaN 4.64.34.84.5NaN 3.74.14.13.83.64.14.13.54.15NaN 4.54.23.54.34.94.654.34.74.64.84.24.64.43.54.944.43.74.544.8NaN 4.74.74.64.94.74.44.44.13.92.84.84.44.74.53.54.34.14.43.74.74.94.23.14.24.54.14.44.43.744.84.544.34.73.83.74.24.14.54.44.43.94.644.54.44.34.24.74.944.14.64.644.644.14.34.34.94.14.73.54NaN 4.64.24NaN 4.24.34.73.54.24.14.94.34.34.13.84.1NaN 4.74.53.84.64.24.33.64.73.64.13.94.14.34.54.33.8NaN 4.654.14.74.74.64.453.54.13.83.54.24.544.24.6NaN 2.93.84.44.44.54.24.24.23.24.24.34.64.43.34.644.84.14.64.94.64.9NaN 4.23.54.554.74.94.84.444.24.844.64.44.34.64.1NaN 4.844.43.63.5454.64.34.64.54.94.74.64.44.84.14.14.14.444.94.94.63.94.64.84.144.4444.4NaN 4.14.64.74.74.344.44.8NaN 4.84.2NaN 4.73.64.74.44.94.14.44.94.854.34.954.34.944.23.73.64.53.54.94.64.344.24.54.33.14.74.14.24.34.53.64.34.44.754.54.754.33.84.6NaN 4.44.14.34.34.64.93.84.84.444.14.84.64.544.23.64.54.64.74.9444.34.34.54.64.34.24.63.94.6NaN 4.84.54.34.74.54.44.14.64.54.64.34.14.93.94.454.44.63.954.54.44.64.14.34.44.64.13.644.24.24.94.84.3NaN 4.34.34.24.754.74.23.83.74.54.93.744.34.44.644.94.35534.84.23.44.14.94.64.7NaN 4.33.74.44.94.24.44.944.14.54.34.14.94.64.13.64.44.34.644.34.34.54.34.14.2NaN 4.64.24.44.34.7NaN 4.84.74.5NaN 4.94.94.144.14.54.14.44.94.74.64.12.74.744.64.14.24.44.14.64.93.54.1NaN 4.64.54.64.954.44.84.54.34.14.84.84.24.24.84.24.84.74.644.54.64.64.34.44.14.44.14.54.24.44.74.44.93.84.63.54.14.14.64.34.244.24.14.44.84.24.84.23.94.93.84.83.93.84.954.64.84.73.84.64.944.24.64.244.94.64.24.34.54.74.93.53.7NaN 43.23.44.64.84.34.24.4NaN 44.44.344.2NaN 4.44.94.84.84.64.4NaN 4.34.2NaN 4.644.7NaN 4.84.24.64.14.13.54.74.43.64.24.34.14.74.34.33.64.64.34.34.84.44.94.73.84.34.74.24.54.24.644.94.14.44.9444.34.74.54.844.14.44.14.94.844.354.74.72.54.14.14.54.44.44.64.64.74.14.73.94.73.84.44.24.34.24.94.74.54.34.244.24.64.64.34.54.44.64.44.34.33.74.94.144.74.74.654.84.14.14.74.14.644.34.14.744.344.14.24.44.5NaN 4.654.74.64.64.64.24.24.94.84.24.644.64.14.34.14.44.64.64.34.34.74.64.13.84.94.24.14.74.34.34.44.344.74.14.64.54.83.83.63.54.43.754.54.54.344.23.53.34.84.24.84.244.44.54.14.14.74.44.94.8NaN 3.84.14.74.24.44.34.33.64.64.44.14.74.43.74.84.44.844.64.144.64.64.614444.13.54.64.53.94.64.24.654.13.24.14.24.9NaN 4NaN 4NaN 3.82.944.54.82.74.14.14.94.154.14.64.64.24.34.33.84.84.454.34.944.74.84.4NaN 4.644.14.44.74.24.74.8NaN 3.94.34.34.14.344.14.94.34.84.54.74.64.94.53.54.854.44.54.53.74.24.34.24.24.24.144.74.22.74.64.63.94.154.344.34.644.74.653.82.643.44.14.24.94.2544.24.64.44.23.34.744.24.33.54.74.14.8444.54.14.64.34.64.64.14.64.14.44.54.14.14.4454.44.84.84.63.74.74.153.94.44.74.24.44NaN 4.64.64.44444.14.94.32.8NaN 4.44.63.83.64.14.14.64.33.84.24.44.24.34.344.14.54.94.14.84.94.34.7444.24.23.544.34.52.84.14.34.24.743.54.14.94.14.44.83.94.444.44.14.64.74.34.644.64.74.24.14.54.14.14.754.1NaN 4.843.24.34.74.64.44.54.74.94.14.443.74.74.94.54.14.64.84.23.74.34.44.944.84.63.54.64.74.1NaN 4.24.14.74.34.24.14.14.14.14.63.5NaN 4.44.14.44.64.64.54.64.13.14.64.13.63.84.44.144.14.84.54.24.84.84.74.64.34.23.7454.84.13.74.33.64.644.64.34.24.64.54.14.34.94.84.14.64.44.44.24.54.34.23.44.74.34.53.74.14.64554.84.14.744.74.74.2NaN 4.24.23.7444.94.344.444.34.64.84.93.54NaN 4.14.24.74.94.24.44.74.24.84.74.3NaN 4.84.44.73.54.54.13.94.644.544.24.543.94.34.44.14.14.24.34.24.54.74.954.254.34.144.444.34.44.444.94.54.74.344.854.44.144.84.84.944.14.24.14.94.44.6NaN 4.64.64.64.24.34.14.82.84.44.73.64.64.54.74.33.94.14.353.944.64.24.64.64.14.94.44.954.14.84.74.74.34.83.84.63.93.54.54.23.64.24.44.54.154.94.54.74.64.34.14.54.64.354.64.44.74.3154.14.34.64.34.544.24.4NaN 53.14.24.2NaN 4.83.94.74.23.94.64.83.34.34.654.14.54.14.93.6NaN 4.754.24.54.64.44.84.85NaN 4.24.14.94.34.34.644.34.94.44.73.84.854.6NaN 3.84.84.54.64.64.6NaN 4.63.54.944.24.14.744.74.74.74.64.24.24.23.54.74.44.14.63.74.34.24.54.74.34.54.8NaN 4.83.64.4NaN 4.24.14.24.94.63.94.74.72.84.64.24.654.64.63.53.5NaN 4.84.614.34.34.14.34.14.64.94.34.64.64.14.1NaN 44.34.84.14.144.64.44.344.34.244.44.24.24.94.64.94.3NaN 4.24.94.24.24.844.84NaN 4.213.74.85NaN 4.24.74.3NaN 4.954.14.44.14.73.54.554.84.74.64.14.64.84.64.54.54.64.354.84.6444.74.24.13.6544.34.34.34.54.63.94.24.14.93.344.14.843.144.54.2NaN 4.14.74.84.44.74.14.9NaN 4.64.15444.34.34.64.64.34.8444.24.34.74.24.13.9NaN 4.344.34.94.84.94.8444.14.24.23.54.1453.54.34.53.74.64.74.642.64.34.64.34.82.64.33.74.64.93.64.24.1NaN 4.7NaN 4.24.94.454.34.44.24.944.14.44.14.644.8NaN 4.64.84.64.54.94.34.34.44.14.64.74.74.74.44.14.14.24.844.54.3NaN 4.9NaN 3.94.54.8444.44.14.74.34.74.32.54.854.34.34.34.34.14.24.64.1NaN 4.244.13.954.14.84.6544.944.74.14.94.8544.14.34.24.14.34.744.93.34.74.64.944.44.64.3454.54.34.84.24.83.554.34.44.24.24.74.14.14.44.34.84.14.74.54.64.3NaN 4.953.63.84.24.64.244.24.654.84.44.24.14.64.14.72.54.14.14.64.93.44.34.343.24.64.24.24.44.74.6NaN 44.83.74.94.84.24.6NaN 4.654.54.444.44.54.14.14.44.74.44.34.34.14.14.94.34.14.54.63.54.64.74.14.73.94NaN 4.34.74.44.74.54.74.44.24.14.343.84.24.14.14.644.24.14.24.64.5NaN 4.74.74.44.84.14.24.64.14.344.84.64.64.544.54.74.744.84.74.54.54.84.94.14.64.74.84.744.95NaN 4.74444.72.84.94.14.34.94.24.84.33.64.84.64.74.24.34.74.844.24.14.63.944.63.54.74.94.44.34.84.13.94.44.14.64.24.14.74.64.14.14.54.64.14.14.14.82.64.54.14.5NaN 4.84.64.24.64.24.94.24.24.64.84.14.64.14.44.44.14.44.14.74.24.93.34.84.44.43.54.64.84.84.74.13.64.64.84.44.94.24.54.74.94.44.73.94.74.644.44.14.14.64.14.54.74.24.34.644.44.64.54.24.154.94.24.24.74.94.14.93.63.644.754.454.7NaN 4.34.74.14.24.44.14.54.74.3NaN 4.63.74.34.74.344.54.64.74.54.74.84.44.63.74.14.144.24.93.644.34.74.14.24.14.44NaN 4.13.54.64.24.64.3554.14.9NaN 4.43.92.84.34.554.64.94.74.94.94.14.94.74.74.44.64.84.24.24.74.44.14.844.23.14.44.54.14.7NaN 4.44.52.6NaN 4.34.34.14.24.34.74.644.93.24.33.54.63.84.644.54.5NaN 4.643.94.94.44.54.64.24.94.14.14.23.74.24.63.9144.254.44.14.44.14.83.54.24.24.23.84.44.64.85NaN 44.454.244.3NaN 4.64.94.344.34NaN 44.8NaN 4.14.34.14.24.14.7NaN 4.24.34.73.244.34.34.64.444.34.84.14.654.64.64.33.554.24.144.24.14.34.353.74.33.743.54.24.94.54.63.64.44.44.44.94.84.94.14.74.74.94.74.64.84.1NaN 4.24.64.24.64.54.84.74.64.74.14.84.24.74.14.4NaN 4.64.14.43.53.54.44.954.24.93.64.54.84.64.74.34.44.74.54.24.44.144.2NaN 4.54.544.84.14.6NaN 4.34.84.34.74.53.64.94.344.64.44.34.74.34.44.84.254.34.63.54.24.34.644.14.74.24.94.254.54.83.83.94.63.54.64.34.64.94.84.1NaN 4.34.44.83.84.34.3NaN 4.53.844.93.64.24.554.24.944.454.64.74.44.34.24.354.64.64.24.44.4554.64.34.74.114.34.14.24.644.83.53.74.14.84.74.7454.24.54.854.74.44.34.64.72.544.74.73.84.34.63.64.34.344.344.74.443.343.54.7NaN 4.13.6444.84.44.94.53.9NaN 4.8NaN 4.74.34.64.44.94.94.64.14.34.64.64.63.644.54.64.24.14.64.914.444.95544.54.64.54.74.23.54.64.454.7NaN 4.854.4NaN 4.14.94NaN 4.14.24.14.144.94.854.454.654.44.12.74.24.64.64.64.54.94.93.5NaN 4.64.24.14.44.34.444.44.44.64.64.844.33.74.13.714.654.2NaN 4.54.64.14.63.64.44.64.94.14.34.54.94.1NaN 4.84.64.54.94.74.24.34.74.94.14.84.24.74.843.54.74.24.64.94.74.54.64.654.554.73.74.854.44.64.24.14.63.5544.64.44.44.14.44.333.74.14.54.744.74.44.24.5NaN 3.74.14.24.24.244.34.64.34.24.44.3NaN 4.73.54.64.24.44.2NaN 4.34.74.74.34.34.24.24.144.54.4NaN 4.34.84.644.44.74.84.7NaN 4.444.34.94.34.24.74.744.23.94.64.14.94.154.13.64.24.24.34.34.44.94.64.84.44.254.34.24.64.33.54.34.244.23.54.44.754.244.444.144.74.73.94.23.54.93.94.54.24.44.44.64.34.44.64.33.94.64.63.94.94.24.14.653.94.44.12.64.63.54.84.14.14.84.84.34.84.44.43.94NaN 4.64.54.94.22.84.3NaN 4.23.63.414.74.1454.54.24.3NaN 14.24.454.44.13.53.54.64.94.34.84.64.54.14.44.74.14.353.64.142.94.34.14.34.63.64.44.14.33.84.7NaN 4.4NaN 4.64.44.14.14.74.34.644.54.82.94.14.6NaN 4.744.144.94.44.94.24.74.64.244.14.14.1NaN 4.74.34.84.44.94.244.34.93.64.34.44.44.24.14.64.64.94.24.44.34.14.74.24.94.14.34.64.14.54.93.6454.24.74.5NaN 4.64.344.34.64.23.64.2NaN 4.54.54.64.154.3554.34.954.74.24.74.84.33.64.344.54.14.24.53.544.34.7NaN 4.14.84.24.44.74.94.444.84.44.2NaN 4.23.344.74.64.14.94.54.64.64.74.64.14.64.64.34.74.14.94.14.74.24.14.14.8NaN 44.64.64.44.64.744.34.64.64.34.44.94.954.244.64.84.64.34.853.74.64.34.53.5NaN 4.644.44.44NaN 4.754.44.24.1NaN 4.3NaN 4.24.34.3NaN 4.14.34.74.34.44.64.43.84.94.24.34.44.24.54.64.94.64.44.64.84.34.954.34.74.84.54.94.64.84.63.64.93.64.24.64NaN 4.53.6NaN 4.154.74.44.24.944.64.83.74.344.54.34.44.4444.14.74.84.54.34.64.74.94.94.243.64.14.44.64.64.544.24.64.74.64.94.24.24.74.44.34.14.8NaN 4.23.24.34.64.44.73.94.144.34.64.14.14.23.64.14.54.34.23.84.14.83.74.63.84.944.34.1NaN 4.54.64.254.64.253.94.24.14.7NaN 4.14.24.33.74.9NaN 4.64.3NaN 4.554.644.64.54.54.34.23.84.34.44.84.64.74.24.33.83.54.12.53.94.34.24.14.6NaN 4.73.74.3NaN 3.93.54.74.14.1NaN 4.14.4NaN 4.14.74.744.94.33.74.14.34.654.2NaN 4.44.254.814.344.94.13.74.74.54.24.24.24.74.54.15NaN 4.94.64.54.34.94.84.64.44.14.64.84.454.54.44.84.44.43.24.34.84.54.94.444.14.2NaN 4.54.84.644.93.34.33.73.54.14.14.14.24.23.54.64.14.34.74.24.34.74.14.54.24.44.94.83.34.74.64.84.64.43.84.83.54.44.24.544444.643.94.6NaN 4.13.744.14.654.14.24.34.84.3NaN 4.24.84.54.14.43.84.34.44.44.64.543.64.33.644.74.64.44.63.84.14.944.34.74.74.3NaN 4.64.64.34.74.83.54.34.34.34.94.54.444.94.64.23.84.84.64.74.954.33.54.34.54.54.644.14.24.63.84.54.44.44.6NaN 4.24.24.44.24.23.74.94.754.14.6NaN 4.44.44.54.654.24.53.54.14.83.543.54.94.44.33.7NaN 4.84.444.34.84.14.34.14.34.44.84.44.24.34.44.34.34.24.5NaN 4.34.6NaN 4.93.74.74.443.954NaN 4.14.753.94.6444.24NaN 3.94.64.34.44.74.4NaN 3.84.24.14.34.74.14.84.34.34.64.24.94.34.744.54.14.44.24.84.34.14.73.74.24.64.8NaN 54.53.64.14.14.74.74.64.12.94.1454.84.64.24.13.84.14.34.94.34.454.73.83.73.63.6454.94.74.94.14.24.74.94.24.14NaN 3.24.1NaN NaN 4.34.54.94.64.74.24.13.94.14.34.644.2NaN 4.34.74.34.84NaN 44.84.74.34.43.94.24.14.54.64.44.14.34.24.94.93.54.53.74.84.44.64.6NaN 4.84.543.44.34.14.844.14.64.554.74.64.44.24.24.24.74.34.94.843.73.84.84.54.74.34.74.94.1NaN 4.64.94.244.63.73.53.143.83.84.33.74.44.74.94.244.94.7NaN 4.1NaN 4.44.844.914.34NaN 4.94.33.84.94.44.74.9NaN 3.84.744.84.84NaN 4.24.94.63.84.44.24.84.14.64.24.64.84.34.24.14.74.83.7NaN 4.23.94.84.644.844.64.14.554.744.74.943.84.14.64.6544.8NaN 4.84.44.44.24.84.54.24.944.1444.5NaN 4.14.64.34.24.54.44.64.44.24.444.23.544.14.84.54.74.14.84.54.23.53.83.84.84.734.33.94.94.644.24.44.84.94.13.7NaN NaN 4.64.14.14.34.74.43.54.44.14.34.64.353.74.64.54.14.93.94.84.23.744.24.3NaN 4.24.44.23.74.64.64.94.84.74.14.24.84.94.64.14.14.54.44.854.243.944.74.344.54.73.34.54.24.84.8NaN 4.754.34.24.54.34.44.73.5444.34.14.23.94.24.63.74.6NaN NaN 4.24.94.34.73.544.54.514.94.153.84.14.84.64NaN 4.54.34.84.64.44.74.14.63.74.14.13.94.44.74.14.24.14.73.84.84.14.44.64.24.64.42.54.34.14.84.44.44.654.34.34.54.43.644.744.24.54.73.74.43.94.73.94.54.84.24.64.54.14.944.84.74.4NaN 4.24.7NaN 4.33.14.844.64.64.14.23.84.63.84.44.53.84.13.8NaN 4.44.4NaN 4.944.14.74.13.84.43.94.63.83.54.34.24.24.5544.54.74.14.14.64.34.24.14.14.7NaN 4.84.24.14.74.64NaN 3.74.34.24.34.34.24.94.43.84.2NaN 44.244.14.34.14.94.93.84.64.13.644.34.6NaN 4.2NaN 44.34.644.74.13.73.654.54.34.14.84.3NaN 3.64.844.53.64.444.744.24.44.644.43.54.24.33.754.84.64.24.34.54.54.644.84.654.34.154.24.44.64.14.94.8NaN 3.64.84.34.53.54.64.64.1NaN 4.44.84.344.34.44.244.24.253.84.14.93.64.74.3NaN 4.74.63.54.73.74.84.74.14.64.254.94.84.64.43.94.23.94.34.44.14.54.94.34.84.54.24.14.3NaN 4.43.84.64.25NaN 4.54.14.33.64.44.3NaN 3.54.73.844.84.24.144.34.844.74.24.64.14.64.14.43.954.754.34.42.54.64.44.94.344.14.94.454.24.23.84.64.24NaN 4.44.64.53.93.74.24.34.7NaN 4.34.54.144.24.44.14.74.14.64.514.74.44.64.444.44.74.654.33.54.44.44.74.84.14.24.644.254.44.24.14.24.6NaN 4.24.63.64.74.22.6444.24.14.64.44.34.74.44.84.6NaN 4.64.54.73.64.354.63.84.44.1544.44.74.63.54.254.353.64.64.644.14.44.34.84.14.54.14.63.94.84.854.73.64.43.74.24.14.24.34.23.84.34.44.14.74.44.14.3NaN 4.74.44.33.84.24.944.74.64.64.1444.84.34.33.54NaN 4.73.74.64.944.74.5NaN 3.74.14.344.34.44.54.72.944.24.44.94.33.94.34.44.54.24.64.24.44.44.34.94.24.83.73.34.2NaN 4.34.34.43.54.64.64.24.34.74.42.84.64.84.43.74.54.44.543.84.2NaN 4.74.94.54.44.63.553.83.7NaN 4.6NaN 4.63.544.654.34.84.64.64.64.74.44.23.84.44.34.9NaN 44.84.14.54.94.154.34.24.14.44.94.94.84.63.94.24.13.544.643.83.64.74.73.83.64.544.54.34.24.14.23.14.24.9544.74.94.54.64.94.14.544.1NaN 4.54.44.14.34.74.84.23.74.64.24.144.44.24.63.93.54.34.74.74.84.74.73.84.854.94.14.943.54.34.24.54.64.74.84.64.84.44.64.34.554.744.14.64.64.3NaN 4.13.94.643.94.34.24.74.23.643.84.14.64.84.34.63.54.34.12.84.2NaN 4.74.44.14.34.74.64.33.84.34.84.654.644.63.94.24.6444.14.74.84.3NaN 4.84.24.84.24.23.24.84.44.554.24.34.54.54.24.24.24.24.74.64.64.44.444.24.24.14.34.64.14.74.74.24.63.84.1NaN 4.14.93.74.33.84.24.53.64.14.14.34.44.7544.24.24.34.24.54.64.64.53.6554.74.64.44.84.24.84.24.14.34.33.72.74.84.34.14.64.24.34.34.84.74.24.14.84.74.14.34.144.44.24.44.44.94.34.54.84.43.64.54.52.74.64.74.54.454.84.44.74.244.54.33.6NaN 4.24.443.74.44.14.34.23.84.14.23.82.814.74NaN 4.94.444.1NaN 4.154.64.94.34.24.13.54.6NaN 4.74.84.152.64.34.44.34.84.64.14.44.44.34.24.64.54.64.74.454.64.64.444.34.54.84.74.94.83.83.543.644.64.83.64.14.44.1NaN 4.54.84.7NaN 3.844.34.14.14.54.54.54.93.84.54.14.144.34.44.44.84.44.64.14.13.64.64.84.44.34.64.24.54.44.63.54.94.54.34.34.44.7553.74.24.154.2544.74.354.64.64.64.14.34.44.63.64.34.73.64.64.64.844.94.64.544.754.14.14.14.64.944.14.14.84.4NaN 3.554.74.84.84.64.44.33.24.23.74.85NaN 4.44.654.14.33.84.14.64.74.24.74.24.94.84.74.44.24.24.63.743.74.73.64.74.44.54.34.44.9NaN 4.43.94.444.14.84.24.84.14.64.24.64.44.84.74.24.1NaN 4.84.24.64.44.14.34.82.54.34.1NaN 4.6NaN 4.64.83.944.94.244.34.74.6NaN 4.34.24.34.343.54.74.84.854.83.94.34.44.14.74.44.53.34.24.34.64.54.64.23.643.54.84.34.14.24.244.34.74.24.64.44.74.14.94.94.64.13.83.54.94.34.24.44.34.64.54.8NaN 4.63.94.44.34.43.754.3444.34.24.54.84.94.54.33.84.63.74.654.514.64.34.84.74NaN 4.74.944.24.23.84.64.24.6NaN 3.54.13.54.44.54.34.74.23.74.14.74.94.74.3544.73.754.244.74.54.24.54.44.14.14.73.74.74.84.24.854.94.83.74.84.74.54.24.64554.34NaN 54.84.53.94.63.84.94.64.74.34.74.14.24.14.14.74.34.34.73.654.64.52.94.44.54.6544.24.22.64.54.14.74.94.64.74.84.74.744.64.24.8NaN 4.33.74.844.94.1544.14.743.94.84.644.64.42.84.84.33.73.84.34.84.74.54.14.34.254.63.94.853.54.94.64.24.644.954.74.14.34.54.24.454.94.24.62.54.14.74.54.24.24.44.54.14.44.14.84.24.14.33.644.94.74.24.14.644.14.64.64.454.14.944.944.63.74.14.14.54.24.44.93.54.34.94.73.1NaN 4.14.14.654.34.44.24.34544.54.44.64.954.74.444.74.24.84.23.54.73.64.44.34.44.24.94.64.14.63.14.44.64.54.654.24.93.84.84.34NaN 4.64.6454.34.844.244.14.64.34.94.844.74.14.2NaN 4.94.34.14.13.84.74.84.44.74.23.74.64.23.64.14.744.34.44.144.54.6NaN 4.13.54.14.24.83.84.144.24.94.64.83.74.754.14.94.14.34.14.24.14.74.34.24.23.94.74.74.44.73.54.54.24.3NaN NaN 4.34.4NaN 4.24.14.844.54.94.92.74.33.74.44.74.34.44.14.84.64.54.24.74.74.24.654.44.43.54.14.14.34.94.54.93.64.43.73.843.94.64.44.84.24.14.14.43.64.54.54.34.14.64.14.74.64.34.14.34.73.54.34.74.7444.63.54.24.24.84.82.84.54.7NaN NaN 4.2544.34.24.22.84.44.1NaN 43.44.254.24.34.64.94.13.64.94.92.92.64.13.5NaN 4.553.753.64.14.644.644.12.54NaN 4.9NaN 44.64.14.34.44.854.54.34.73.73.64.34.44.64.14.13.54.74.84.5NaN 3.53.74.3NaN 4.6544.84.64.64.53.94.14.74.24.33.64.74.84.14.9NaN 4.54.84.74.644.54.64.84.24.84.74.744.2NaN 4.554.943.94.94.94.24.84.84.74.14.34.64.14.63.54.94.74.654.24.454.64.64.64.64.244.54.83.44.44.24.64.444.23.754.64.144.9NaN 4.44.144.14.44.14.84.64.34.24.74.44.34.54.34.34.64.74.44.84.44.64.84.64.94.34.84.34.44.14.94.74.54.14.64.93.84.64.34.74.64.34NaN 44.34.34.54.34.83.64.74.354.84.64.44.73.54.24.34.2NaN NaN 4.34.84.94.94.354.4NaN 4.34.253.54.64.44.24.14.13.84.24.54.22.93.73.73.64.14.24.7NaN 4.7444.24.34.254.54.3454.43.6NaN 4.44.14.24.14.54.6NaN 2.64.64.744.24.24.34.33.63.54.24.74.84.33.74.844.84.24.7NaN 4.74.84.94.64.73.5NaN 4.343.74.64.8NaN 4.24.54.64.34.84.74.14.9NaN 4.44.74.33.84.844.74.94.54.44.24.84.74.44.54.14.44.64.34.43.94.34.64.12.64.64.64.12.74.74444.24.54.14.74.14.14.14.24.553.54.454.14.3NaN 4.24.24.52.54.54.14.64.6NaN 4.73.7NaN 4.54.64.94.14.44.95NaN 4.44.144.64.64.7454.24.43.54.754.74.5NaN 4.74.74.84.6NaN 4.64.3NaN 4.34.94.14.4NaN 4.6NaN 4.24.34.13.54.243.94.63.43.54.944.14.254.43.9NaN 4.63.43.94.44.83.54.944.74.544.74.43.614.54.54.13.94.44.24.24.84.64.344.34.54.84.74.94.22.94.64.93.64.64.14.63.84.84.14.84.63.94.14.14.754.94.64.84.93.94.74.84.23.84.74.654.94.93.84.74.24.84.44.62.74.94.44.94.34.43.93.844.24.74.14.544.64.1NaN 4.24.94.83.544.14.354.74.94.1444.2NaN 3.74.74.34.24.14.14.54.2NaN 4.34.63.84.34.84.24.344.54.84.24.44.84.83.94.54.34.6NaN 3.64.944.23.8554.3NaN 4.94.354.44.54.1NaN 4.54.94.34.34.53.84.34.24.44.24.14.93.54.94.13.94.844.14.94.44.83.64.54.944.444.13.24.24.64.13.74.844.44.64.34.64.64.94.24.244.44.54.14.74.63.64.94.24.54.1NaN 4.64.74.144NaN 4.23.84.64.64.74.43.64.14.24.34.14.74.644.744.144.44.34.44.64.14.244.2NaN 4.65NaN NaN NaN 4.33.64.753.74.44.74.43.53.83.854.54.44.14.14.844.14.344.14.43.644.74.64.53.73.14.84.64.14.44.24.34.94.24.1NaN 4.14.84.14.83.24.84.24.94.254.74.74.14.64.94.44.84.34.84.64.24.84.44.94.44.14.8444.84.94.44.24.63.54.14.44.84.34.64.64.44.74.94.44.54.23.74.73.54.54.54.53.94.94.44.33.54.243.94.42.64.443.73.93.64.34.64.34.344.844.84.24.14.44.63.64.35443.84.644.53.14.24.64.44.94.84.64.14.84.64.13.74.94.94.14.2NaN 4.63.73.84.83.944.14.84.24.54.23.74.64.63.14.24.84.64.54.64.74.24.93.84.44.84.23.94.14.64.23.94.34.14.844.14.34.44.14.24.254.64.644.4NaN 4.34.94.84.64.34.14.24.14.64.84.34.24.74.34.34.94.33.94.854.34.44.74.74.64.74.64.94.64.14.84.84.3NaN 3.64.44.64.94.74.84.14.64.94.7NaN 3.44.74.24.95NaN 4.34.14.83.54.74.344.34.54.94.74.644.74.1NaN 4.54.74.44.14.74.64.9NaN 4.14.14.34.84.54.24.343.94.34.64.24.3NaN 4.554.744.64.34.344.34.63.54.42.94.3NaN 4.14.24.83.34.54.74.2NaN 44.24.54.24.44.654.84.74.24.23.73.74.63.74.34.74.1NaN 4.84.64.64.44.743.94.6NaN 4.74.64.54.44.54.24.74.244.34.54.24.24.54.854.34.63.84.44NaN 44.814.64.54.14.74.84.84.74.74.14.74.64.24.34.14.3543.74.5554.14.64.1NaN 53.84.14.74.143.64.94.3NaN 4.44.44.6NaN 4.54.8NaN 4.23.44.14.22.84.34.34.254.7NaN 4.44.64.44.73.83.54.34.854.14.24.84.64.44.94.454.94.13.64.344.44.54.944.34.64.54.84.144.64.64.64.64.14.754.34.64.13.64.14.34.644.24.63.74.74.344.84.33.64.84.14.14.14.34.34.14.24.34.54.44.94.64.54.14.93.54.744.944.944.144.84.73.74.54.14.44.5NaN 4.654.84.84.744.244.73.9NaN 4.74.54.24.64.1NaN 54.44.144.44.74.14.24.144.94.64.14.94.74.94.54.14.43.74.74.53.744.94.6NaN 4.94.64.14.64.94.64.9NaN 44.44.44.64.44.44.94.84.94.443.54.63.74.244.84.22.94.84.83.94.63.744.654.34.63.83.73.54.34.6NaN 4.64.84.34.3543.93.94.7NaN 54.74.64.54.64.94.74.23.84.44.74.74.844.44.85NaN 3.84.14.44.3NaN 434.74.64.74.244.64.14.24.34.63.94.74.644.33.74.44.94.84.23.754.64.23.9553.44.94NaN 4.14.24.94.84.13.84.64.14.34.83.94.54.54.13.84.14.34.84.24.13.54.34.44.44.84.4NaN NaN 4.64.13.844.94.93.74.94.94.64.24.24.64.44.243.64.24.34.84.64.94.44.54.54.84.14.64.6NaN 4.74.24.34.94.44.94.64.14.344NaN 4.34.34.64.24.444.24.34.64.34.94.64.34.64.64.24.64.9NaN NaN 4.454.94.54.14.94.64.34.14.14.24.34.94.544.354.34.54.24.94.34.34.84.64.644.94.44.844.74.64.64.44.34.3NaN 3.84.44.44.14.844.944.63.65453.34.64.34.8444.44.34.24.84.94.14NaN 4.74.14.74.24.44.34.24.54.74.454.64.14.24.94.13.74.34.94.54.44.744.64.63.444.43.54.24.24.84.954.24.24.24.14.74.24.34.64.34.94.24.14.14.74.64.73.94.34.54.44.144.34.74.843.84.44.64.24.83.94.244.24.244.24.44.94.94.64.34.94.34.24.74.64.24.24.84.24.14.654.6543.54.144.644.54.54.74.84.64.34.94.84.24.24.44.44.24.84.944.144.84.24.74.34.14.14.14.43.84.24.54.5NaN 4.644.74.14.74.8NaN 4.44.343.64.64.44.24.24.24.94.454.843.64.34.84.74.94NaN 4.344.44.44.6NaN NaN 44.53.54.74.54.44.64.3444.24.244.24.14.33.944.44.74.74.64.64.24.14.64.34.44.7NaN 3.44.74.64.14.23.74.64.73.7NaN 4.34.83.74.34.44.93.44.53.8NaN 4.34.754.14.33.83.74.44.14.24.34.14.8NaN 4.84.244.44.44.3NaN 3.244.34.643.4NaN 3.64.34.34.844.14.34.74.54.54.1NaN 4.34.44.24.44.154.14.65NaN 4.74.63.84.24.94.14.34.24.644.83.84.44.4NaN 4.74.53.7NaN 4.34.84.84.7NaN 4.54.34.84.14.64.94.44.63.64.84.34.34.44.354.24.33.54.9NaN NaN 4.343.64.12.94.74.64.23.64.93.74.74.84.24.24.24.64.754.254.34.24.64.74.24.54.44.14.44.24.14.13.84.54.244.1NaN 4.94.94.24.944.64.64.2NaN 4.54.94.64.14.44.94.24.64.74.44.34.64.44.54.64.44.54.354.14.34.44.244.84.64.34.74.24.44.34.63.94.24.654.13.54.44.43.644.24.14.154.54.44.24.14.34.54.74.84.74.54.84.34.44.94.14.414.64.34.54.34.24.62.74.63.7NaN 4.44.94.64.44.24.74.54.92.64.94.14.74.34.94.14.144.643.7NaN 4.23.54.54.344.14.64.14.944.84.44.13.63.74.84.24.64.94.54.34.24.24.62.74.54.54.2NaN 4.6NaN 4.34.83.54.65NaN 4.94.63.644.4NaN 4.74.344.64.34.14.53.94.44.64.63.34.6NaN 3.54.544.94.33.94.24.64.14.74.74.9443.944.14.24.94.44.64.3NaN 4.244.143.94.34.24.84514.23.64.24.644.24.84.74.34.74.14.64.754.24.2NaN 4.34.84.253.654.13.54.23.54.23.64.754.6NaN 4.24.3NaN NaN 4.64.7444.64.454.34.54.44.84.24.2NaN 4.74.64.13.84.44.93.544.44.34.944.34.14.543.43.64.554.64.24.64.14NaN 3.74.64.74.653.94.84.24.14.14.14.24.84.544.14.64.94.64.94.93.94.84.64.24.74.64.24.14.54.43.54.84.74.44.64.14.44.33.82.94.44.24.74.74.64.1NaN 4.44.74.34.2NaN 4.34.13.9NaN 2.744.53.43.8NaN 4.24.24.64.24.94.24.84.354.84.43.74.14.64.64.24.24.64.24.74.14.14.94.34.94.454.64.24.64.8NaN 4.94.9NaN 4.64.93.94.34.14.34.34.154.244.64.64.24.24.24.6' to numeric
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "C:\Users\32773\Desktop\外卖消费行为处理好的数据1\外卖消费行为处理好的数据\data mining.py", line 227, in <module>
cluster_profile = data.groupby('Cluster')[cluster_features].mean()
File "C:\Users\32773\.conda\envs\mining\Lib\site-packages\pandas\core\groupby\groupby.py", line 2459, in mean
result = self._cython_agg_general(
"mean",
alt=lambda x: Series(x, copy=False).mean(numeric_only=numeric_only),
numeric_only=numeric_only,
)
File "C:\Users\32773\.conda\envs\mining\Lib\site-packages\pandas\core\groupby\groupby.py", line 2005, in _cython_agg_general
new_mgr = data.grouped_reduce(array_func)
File "C:\Users\32773\.conda\envs\mining\Lib\site-packages\pandas\core\internals\managers.py", line 1488, in grouped_reduce
applied = sb.apply(func)
File "C:\Users\32773\.conda\envs\mining\Lib\site-packages\pandas\core\internals\blocks.py", line 395, in apply
result = func(self.values, **kwargs)
File "C:\Users\32773\.conda\envs\mining\Lib\site-packages\pandas\core\groupby\groupby.py", line 2002, in array_func
result = self._agg_py_fallback(how, values, ndim=data.ndim, alt=alt)
File "C:\Users\32773\.conda\envs\mining\Lib\site-packages\pandas\core\groupby\groupby.py", line 1948, in _agg_py_fallback
raise type(err)(msg) from err
TypeError: agg function failed [how->mean,dtype->object]
进程已结束,退出代码为 1
纠错