code chef - Divide the Tangerine 橘子分块算法题解

本文解析了一个关于如何从已打乱的橘子分堆中重新分出目标堆的问题。通过使用二分查找等算法,文章提供了一种有效的方法来判断是否能够实现目标分堆。

Once Chef decided to divide thetangerineinto several parts. At first, he numbered tangerine's segments from1tonin the clockwise order starting from some segment. Then he intended to divide the fruit into several parts. In order to do it he planned to separate the neighbouring segments inkplaces, so that he could getkparts: the1st- from segmentl1to segmentr1(inclusive), the2nd- froml2tor2, ..., thekth- fromlktork(in all cases in the clockwise order). Suddenly, when Chef was absent, one naughty boy came and divided the tangerine intopparts (also by separating the neighbouring segments one from another): the1st- from segmenta1to segmentb1, the2nd- froma2tob2, ..., thepth- fromaptobp(in all cases in the clockwise order). Chef became very angry about it! But maybe little boy haven't done anything wrong, maybe everything is OK? Please, help Chef to determine whether he is able to obtain the parts he wanted to have (in order to do it he can dividepcurrent parts, but, of course, he can't join several parts into one).

Please, note that parts are not cyclic. That means that even if the tangerine division consists of only one part, but that part include more than one segment, there are two segments which were neighbouring in the initial tangerine but are not neighbouring in the division. See the explanation ofexample case 2to ensure you understood that clarification.

Input

The first line of the input contains an integerTdenoting the number of test cases. The description ofTtest cases follows.
The first line of each test case contains three space separated integersn,k,p, denoting the number of tangerine's segments and number of parts in each of the two divisions. The nextklines contain pairs of space-separated integersliandri. The nextplines contain pairs of space-separated integersaiandbi.

It is guaranteed that each tangerine's segment is contained in exactly one of the firstkparts and in exactly one of the nextpparts.

Output

For each test case, output a single line containing either "Yes" or "No" (without the quotes), denoting whether Chef is able to obtain the parts he wanted to have.

Constraints

  • 1T100
  • 1n5 * 107
  • 1kmin(500, n)
  • 1pmin(500, n)
  • 1li,ri,ai,bin

Example

Input:
2
10 3 2
1 4
5 5
6 10
1 5
6 10
10 3 1
2 5
10 1
6 9
1 10

Output:
Yes
No

Explanation

Example case 1:To achieve his goal Chef should divide the first part (1-5) in two by separating segments 4 and 5 one from another.

Example case 2:The boy didn't left the tangerine as it was (though you may thought that way), he separated segments 1 and 10 one from another. But segments 1 and 10 are in one part in Chef's division, so he is unable to achieve his goal.


好长的题目,本题目的难度就是如何读懂题目了。

题目解析:

1 把一个橘子分块,然后分堆,所有堆中有的快的序号必须是顺时针数起

2 分堆已经乱了

3 是否在乱了的堆中分出原来想要分的堆?

额外隐藏条件: 1 所有堆都需要分出来 2 不能合并堆,只能分开堆

读懂题目就能出答案了,尤其是隐藏条件

注意:

1 输出格式Yes不是YES

2 vector容器每次都需要清零

这个程序的时间效率有点复杂,是:O(lg(k)*max(k, p))

#include <iostream>
#include <vector>
#include <string>
#include <algorithm>

using namespace std;

struct Tangerine
{
	int left, right;
	bool operator<(const Tangerine &t) const
	{
		return left < t.left;
	}
};

bool biDiv(vector<Tangerine> &vk, int low, int up, int left)
{
	if (low > up) return false;
	int mid = low + ((up-low)>>1);
	if (vk[mid].left < left) return biDiv(vk, mid+1, up, left);
	if (left < vk[mid].left) return biDiv(vk, low, mid-1, left);
	return true;
}

string divTangerine(vector<Tangerine> &vk, vector<Tangerine> &vp)
{
	sort(vk.begin(), vk.end());
	for (unsigned i = 0; i < vp.size(); i++)
	{
		if (!biDiv(vk, 0, vk.size()-1, vp[i].left)) return "No";
	}
	return "Yes";
}

void DivideTheTangerine()
{
	int n = 0, k = 0, p = 0;
	Tangerine tang;
	vector<Tangerine> vk;
	vector<Tangerine> vp;

	int T = 0;
	cin>>T;
	while (T--)
	{
		cin>>n>>k>>p;
		for (int i = 0; i < k; i++)
		{
			cin>>tang.left>>tang.right;
			vk.push_back(tang);
		}
		for (int i = 0; i < p; i++)
		{
			cin>>tang.left>>tang.right;
			vp.push_back(tang);
		}
		
		cout<<divTangerine(vk, vp)<<endl;

		vk.clear(), vp.clear();
	}
}

OJ:http://www.codechef.com/problems/TANGDIV





【直流微电网】径向直流微电网的状态空间建模与线性化:一种耦合DC-DC变换器状态空间平均模型的方法 (Matlab代码实现)内容概要:本文介绍了径向直流微电网的状态空间建模与线性化方法,重点提出了一种基于耦合DC-DC变换器状态空间平均模型的建模策略。该方法通过对系统中多个相互耦合的DC-DC变换器进行统一建模,构建出整个微电网的集中状态空间模型,并在此基础上实施线性化处理,便于后续的小信号分析与稳定性研究。文中详细阐述了建模过程中的关键步骤,包括电路拓扑分析、状态变量选取、平均化处理以及雅可比矩阵的推导,最终通过Matlab代码实现模型仿真验证,展示了该方法在动态响应分析和控制器设计中的有效性。; 适合人群:具备电力电子、自动控制理论基础,熟悉Matlab/Simulink仿真工具,从事微电网、新能源系统建模与控制研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握直流微电网中多变换器系统的统一建模方法;②理解状态空间平均法在非线性电力电子系统中的应用;③实现系统线性化并用于稳定性分析与控制器设计;④通过Matlab代码复现和扩展模型,服务于科研仿真与教学实践。; 阅读建议:建议读者结合Matlab代码逐步理解建模流程,重点关注状态变量的选择与平均化处理的数学推导,同时可尝试修改系统参数或拓扑结构以加深对模型通用性和适应性的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值