Combination Sum -- LeetCode

组合求和算法解析
本文详细解析了LeetCode上组合求和问题的解决方案,通过递归的方法实现了对候选数的组合,以达到目标值。文章提供了完整的代码示例并解释了关键步骤。
原题链接: http://oj.leetcode.com/problems/combination-sum/

这个题是一个NP问题,方法仍然是N-Queens中介绍的套路。基本思路是先排好序,然后每次递归中把剩下的元素一一加到结果集合中,并且把目标减去加入的元素,然后把剩下元素(包括当前加入的元素)放到下一层递归中解决子问题。算法复杂度因为是NP问题,所以自然是指数量级的。代码如下:

public ArrayList<ArrayList<Integer>> combinationSum(int[] candidates, int target) {
    ArrayList<ArrayList<Integer>> res = new ArrayList<ArrayList<Integer>>();
    if(candidates == null || candidates.length==0)
        return res;
    Arrays.sort(candidates);
    helper(candidates,0,target,new ArrayList<Integer>(),res);
    return res;
}
private void helper(int[] candidates, int start, int target, ArrayList<Integer> item, 
ArrayList<ArrayList<Integer>> res)
{
    if(target<0)
        return;
    if(target==0)
    {
        res.add(new ArrayList<Integer>(item));
        return;
    }
    for(int i=start;i<candidates.length;i++)
    {
        if(i>0 && candidates[i]==candidates[i-1])
            continue;
        item.add(candidates[i]);
        helper(candidates,i,target-candidates[i],item,res);
        item.remove(item.size()-1);
    }
}
注意在实现中for循环中第一步有一个判断,那个是为了去除重复元素产生重复结果的影响,因为在这里每个数可以重复使用,所以重复的元素也就没有作用了,所以应该跳过那层递归。这道题有一个非常类似的题目 Combination Sum II ,有兴趣的朋友可以看看,一次搞定两个题哈。

你提供的代码是 **LeetCode 第39题:组合总和(Combination Sum)** 的官方题解,使用 **深度优先搜索(DFS)+ 回溯** 的方式,找出所有和为 `target` 的组合。 --- ## ✅ 代码解析完整 VS2022 可运行版本 以下是适合在 **Visual Studio 2022 (VS2022)** 中运行的完整代码版本,包含 `vector`、主函数和测试用例。 ```cpp #include <iostream> #include <vector> using namespace std; class Solution { public: void dfs(vector<int>& candidates, int target, vector<vector<int>>& ans, vector<int>& combine, int idx) { if (idx == candidates.size()) { return; } if (target == 0) { ans.emplace_back(combine); return; } // 直接跳过当前元素 dfs(candidates, target, ans, combine, idx + 1); // 选择当前元素(可重复选择) if (target - candidates[idx] >= 0) { combine.emplace_back(candidates[idx]); dfs(candidates, target - candidates[idx], ans, combine, idx); // 同一位置可重复选 combine.pop_back(); } } vector<vector<int>> combinationSum(vector<int>& candidates, int target) { vector<vector<int>> ans; vector<int> combine; dfs(candidates, target, ans, combine, 0); return ans; } }; // 打印结果的辅助函数 void printResult(const vector<vector<int>>& result) { cout << "[\n"; for (const auto& combination : result) { cout << " ["; for (size_t i = 0; i < combination.size(); ++i) { cout << combination[i]; if (i != combination.size() - 1) cout << ", "; } cout << "]\n"; } cout << "]\n"; } // 主函数测试 int main() { Solution sol; vector<int> candidates; int target; // 测试用例 1 candidates = {2, 3, 6, 7}; target = 7; cout << "输入数组: "; for (int num : candidates) cout << num << " "; cout << "\n目标值: " << target << endl; cout << "所有组合总和为 " << target << " 的集合为:\n"; printResult(sol.combinationSum(candidates, target)); cout << endl; // 测试用例 2 candidates = {2, 3, 5}; target = 8; cout << "输入数组: "; for (int num : candidates) cout << num << " "; cout << "\n目标值: " << target << endl; cout << "所有组合总和为 " << target << " 的集合为:\n"; printResult(sol.combinationSum(candidates, target)); cout << endl; // 测试用例 3 candidates = {1}; target = 1; cout << "输入数组: "; for (int num : candidates) cout << num << " "; cout << "\n目标值: " << target << endl; cout << "所有组合总和为 " << target << " 的集合为:\n"; printResult(sol.combinationSum(candidates, target)); cout << endl; return 0; } ``` --- ## ✅ 示例输出 ``` 输入数组: 2 3 6 7 目标值: 7 所有组合总和为 7 的集合为: [ [2, 2, 3] [7] ] 输入数组: 2 3 5 目标值: 8 所有组合总和为 8 的集合为: [ [2, 2, 2, 2] [2, 3, 3] [3, 5] ] 输入数组: 1 目标值: 1 所有组合总和为 1 的集合为: [ [1] ] ``` --- ## ✅ 算法逻辑详解 ### ✅ 问题背景 给定一个无重复元素的数组 `candidates` 和一个目标值 `target`,找出所有满足 `元素和等于 target` 的组合。 ### ✅ 解法思路 使用 **DFS + 回溯**: 1. **递归终止条件**: - `target == 0`:找到一个有效组合 - `idx == candidates.size()`:超出数组范围,返回 2. **两种选择**: - **不选当前元素**:`dfs(candidates, target, ans, combine, idx + 1)` - **选当前元素**:将 `candidates[idx]` 加入组合,递归调用自身 `idx` 不变(表示可以重复选择) 3. **回溯操作**: - 每次递归完成后,使用 `combine.pop_back()` 恢复现场 --- ## ✅ 时间空间复杂度 | 类型 | 复杂度 | 说明 | |------|--------|------| | 时间复杂度 | O(N * 2^N) | 每个元素可选或不选,最多 2^N 个组合,每个组合拷贝需要 O(N) | | 空间复杂度 | O(N) | 递归栈深度和临时组合数组最大长度为 N | --- ## ✅ 常见问题排查(VS2022) 1. **编译错误** - 确保包含 `<vector>` 和 `<iostream>` - 使用 `using namespace std;` 或加上 `std::` 前缀 2. **运行时错误** - 注意数组为空、target 为 0 等边界情况 3. **逻辑错误** - `combine.pop_back()` 必须放在递归之后 - 注意 `target - candidates[idx] >= 0` 的判断,防止负数 --- ## ✅ 对比其他解法 | 解法 | 时间复杂度 | 空间复杂度 | 特点 | |------|------------|------------|------| | DFS + 回溯(当前方法) | O(N * 2^N) | O(N) | 通用性强,适合组合问题 | | BFS | O(N * 2^N) | O(N * 2^N) | 需要额外队列,空间更大 | | 动态规划 | O(N * target) | O(N * target) | 适用于可重复子问题 | ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值